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the case for multiple metrics in complex networks
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Abstract Modeling and topological analysis of networks

in biological and other complex systems, must venture

beyond the limited consideration of very few network

metrics like degree, betweenness or assortativity. A proper

identification of informative and redundant entities from

many different metrics, using recently demonstrated tech-

niques, is essential. A holistic comparison of networks and

growth models is best achieved only with the use of such

methods.
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Network theory (Albert and Barabasi 2002; Newman 2010)

plays an important role in Systems Biology. Complex

network literature is replete with discussions about net-

works bearing knowledge of function, signatures of com-

plexity and information about ‘‘emergent properties’’ of the

system being encoded in their topology. It is therefore quite

natural to assume that a comprehensive study of a signifi-

cant number of network metrics would convey a lot of

information about the system. Interestingly however, most

papers in literature analyze at most two or three metrics at a

time. Thus arises a very relevant yet unanswered ques-

tion—do these few handpicked network metrics convey

most of the knowledge that could have been known about

the network?

The idea that the network topology can be a major

determinant of function (or dysfunction) has been studied

in considerable detail. The relation between the topological

properties of network nodes (genes, proteins) and func-

tional essentiality is well known in interaction networks

(Albert et al. 2000; Jeong et al. 2001).

In metabolic networks, long before the advent of the

complex networks era, extensive modeling had been done

using steady-state flux balance approaches (Varma et al.

1994) via methods like Flux Balance Analysis (FBA)

(Edwards et al. 2000), Minimization of Metabolic Adjust-

ment (MOMA) (Segre et al. 2002), and Elementary Mode

Analysis (EMA) (Stelling et al. 2002). Nevertheless,

topological analysis has often yielded novel and valuable

insight, in metabolic networks. For example, new param-

eters like synthetic accessibility (SA) have exhibited suf-

ficient power in predicting the viability of knockout strains

with accuracy comparable to approches using biochemical

parameters (like FBA etc.) on large, unbiased mutant data

sets (Wunderlich et al. 2006). This is especially remarkable

since determining SA does not require the knowledge of

stoichiometry or maximal uptake rates for metabolic and

transport reactions which might be necessary in FBA,

MOMA and EMA. Also, it can be rapidly computed for a

given network and has no adjustable parameters.

Degree or the number of connections a node has with

other nodes in the network and sometimes also with itself,

is the most common topological metric in networks. It is

perhaps hard to find a paper in complex networks which

does not mention degree. Degree distributions are generally

well studied for almost all systems. Unfortunately, there is

still a trend of labeling networks possessing heavy-tailed

degree distributions as scale-free networks, i.e., networks

having a power-law degree distribution. This is wide-

spread, in spite of a reliable statistical machinery for

proper identification of scale-free networks (Clauset et al.

2009).
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Power-laws have a special place in statistical physics,

and hence the activity around ‘‘scale-free networks’’ in

physics literature is somewhat understandable . However,

one is at a loss to comprehend as to why ‘‘scale-free net-

works’’ are overemphasized in the biological networks

community. Especially, when many degree distributions

could be fit equally well or perhaps even better by other

distributions. Irrespective of whether they obey a power-

law or not, all heavy-tailed degree distributions have at

least one thing in common: hubs or high degree nodes in

the network. The overreaching engagement with ‘‘hubs’’

seems to stem from the apparent conclusion that removal of

these could cause massive damage to the network. How-

ever, it was shown quite sometime ago by means of the

‘‘S-metric’’, that even with a scaling degree sequence,

extremely important networks like the internet could be

structurally robust and functionally stable (Doyle et al.

2005). Thus, the removal of hubs might not necessarily

have a catastrophic but merely a local effect.

There have been a number of works showing that hubs

are not always the most important nodes. Social scientists

have known this for a long time via the analysis of graphs

like the ‘‘Krackhardt kite graph’’ shown in Fig. 1 (Wass-

erman et al. 1994). One of the most important properties of

a network node is ‘‘betweenness centrality’’, which mea-

sures the fraction of all shortest paths passing through that

node (Freeman 1977). In the world air transportation net-

work, the common perception would probably be that most

shortest flights between any two airports are likely to pass

through cities like London and New York. Actual analysis

showed that many of the shortest paths did not pass through

60 % of the 25 most connected airports. Instead many of

them passed through airports like Anchorage and Port

Moresby (Guimera et al. 2005). Of course carrying forward

this treatment from an unweighted to a weighted network

might change the results somewhat but their general sig-

nificance is not lost. It is also known that maximum

damage would be done to the US airline network if the

airports are targeted by betweenness rather than hubness

(Wuellner et al. 2010). A number of papers using biolog-

ical networks have found important results using

betweenness (Dunn et al. 2005; Hahn et al. 2005; Joy et al.

2005; Hegde et al. 2008; Liu et al. 2009).

Assortative mixing (Newman 2002), i.e. whether high

degree nodes are connected to other high-degree nodes in a

network, is also known to be an important consideration in

a number of biological networks (Bagler et al. 2007;

Pechenick et al. 2012). While it was earlier thought that all

biological networks are disassortative, it has been subse-

quently found that protein contact networks could be

assortative (Bagler et al. 2007).

It should be mentioned here that various measures from

spectral graph theory are known to shed valuable insight in

graphs and have also been studied extensively in biological

networks (Banerjee et al. 2009; Perkins and Langston 2009).

Thus, it is abundantly clear that in some circumstances

degree is an important metric; while in some others it

might be betweenness or assortativity and so on. This

naturally begs the question as to how one can identify

which metrics are important in a given scenario and which

ones are redundant.

In recent literature, an appropriate quantitative frame-

work has been proposed to address this issue this by

incorporating multiple network metrics and higher

moments of some of these (Filkov et al. 2009; Roy et al.

2009). These papers considered a significant number of

metrics, including higher moments of metric distributions,

wherever appropriate. Many distributions are often (albeit

not always), quantified by their first few moments. For

example, distributions of metrics like degree, betweenness,

geodesic or clustering might carry important information

about the system and should be studied in depth whenever

possible. Methods from data mining such as clustering and

statistical dimension reduction techniques like Principal

Component Analysis (PCA) (Jolliffe 2002) can then be

utilized for the unambiguous identification of informative

and redundant network metrics. The results obtained by

this treatment clearly demonstrate that it is not just the

degree or betweenness or some other metric which is

important. Most of the meaningful information is actually

carried by a linear combination of some metrics and/or the

higher moments of a few metrics (Filkov et al. 2009, Roy

et al. 2009). The essence of usage of these techniques is

outlined below.

Fig. 1 An elementary analysis would reveal that targeting a high-

betweenness node like 7 over a ‘hub’ (like 3) would cause much more

damage to the network
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A heatmap is a typical tool in clustering which is

extensively used across the sciences. In a heatmap, the

rows and columns are arranged so that, the most correlated

metrics are placed closest to each other due to the hierar-

chical clustering used. Heatmaps allow us to identify

clusters of similar network attributes by detecting blocks of

squares along the diagonal. A limited amount of clustering

along the diagonal would imply that most of the network

metrics chosen are effectively independent and could be

informative for our analysis. On the other hand, sizable

blocks along the diagonal would denote redundancy.

Well known statistical dimension reduction techniques,

like Principal Components Analysis allow for a compre-

hensive comparison across many metrics in networks. The

essential idea at the heart of PCA is to ensure that when

high dimensional data is projected to a lower dimension,

the maximum variance is retained. PCA enables the pro-

jection of an n-dimensional dataset onto an equi-dimen-

sional space, such that the ‘‘new axes’’ (in other words, the

principal components) are orthogonal. These principal

components are actually linear combinations of the original

dimensional variables, such that the first d axes, where

d B n retains the maximal variance of the original data set.

The power of these methods lies in the fact that they can

also be used for comparing network growth models among

themselves and how individual models fare with respect to

real world networks. (Filkov et al. 2009).

One might wonder if the consideration of the first few

moments of a distribution is a mere book keeping exercise.

That they are indeed informative is reflected by the

emphatic presence of a number of higher moments of

metric distributions in the first few principal components of

analyzed data and/or models (Filkov et al. 2009; Agarwal

et al. 2010; Villar et al. 2010; Bounova et al. 2012). Again,

metabolic networks apparently bear strong signatures of

organism phenotypes in some of the higher moments of

their network metrics (Roy et al. 2009).

In conclusion, the above discussion hopefully estab-

lishes the importance of the fact that it is only proper that

topological analysis and modeling of networks in systems

biology and complex networks should venture beyond the

treatment of betweenness, degree, hubs, scale-free net-

works etc. and instead focus on multiple metrics in

networks.
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