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Existing models of network growth typically have one or two parameters or strategies which are fixed for all
times. We introduce a general framework where feedback on the current state of a network is used to dynami-
cally alter the values of such parameters. A specific model is analyzed where limited resources are shared
among arriving nodes, all vying to connect close to the root. We show that tunable feedback leads to growth of
larger, more efficient networks. Exact results show that linear scaling of resources with system size yields
crossover to a trivial condensed state, which can be considerably delayed with sublinear scaling.
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The prevalence and importance of network structures in
physical, biological, and social systems is becoming widely
recognized. Current research on network growth focuses on
models that reproduce aspects of real-world networks, in par-
ticular the broad range of node degrees typically observed
�1–7�. These simple and elegant models have just one or two
free parameters, or strategies that are specified initially and
remain unaltered even as the network grows to a massive
size, starting from a few seed nodes. Yet the functionality
and performance required of a small network may be radi-
cally different from that of a large network. Thus, it is natural
that the parameters of the growth strategy should change
over time as the network grows. The mechanisms underlying
these distinct growth models can be generally classified as
growth via either preferential attachment �1,3,4�, copying
�2,6�, or optimization �5,7�. In preferential attachment mod-
els, the extent of the preference �i.e., the connection kernel�
could be altered, tuning properties of the resulting degree
distribution �3,8�. In copying models, the probability of suc-
cessfully copying links could be changed, thus affecting de-
gree distribution. In optimization models, the explicit param-
eter values of the optimization function could be altered,
leading to a range of interesting behaviors �5,7,9�.

In this Rapid Communication, we introduce a framework
where information on the current state of a network provides
feedback to the system, allowing it to dynamically alter and
self-tune the parameter values throughout the growth pro-
cess. It combines local optimization models of growth �7,9�
with measures of efficient information flow in a network
�10�. We show that with feedback one can grow larger and
more efficient network structures in less time. This frame-
work can be applied to many systems exhibiting a hierarchi-
cal “chain of command” structure. Simple examples are busi-
ness enterprises, armed forces, etc., with the chief executive
officer or the commander in chief, respectively, being the
root node of the hierarchy. Such a structure has also recently
been found in the organization of genetic regulatory net-
works �11�. More generally, hierarchy appears to be a central
organizing principle of complex networks, providing insight
into structures such as food webs and biochemical and social
networks �12�.

We are interested in growth of hierarchical networks
where information flow is essential to the network’s function.
Two basic considerations are �i� ensuring a smooth “flow” of
commands or information throughout the structure, and �ii�
addition of new nodes subject to constraints on resources.
More explicitly, only some fraction 0�c�1 of existing re-
sources can be dedicated to optimizing new growth. The re-
maining portion of the system is involved with performing
some task �e.g, information processing, regulation, transport,
and routing�, crucial to the sustenance and function of the
organization. We show herein that how the resources allo-
cated for growth scale with system size N directly impacts
the resulting network structure. Moreover, we show that in-
corporating feedback leads to flatter hierarchies on which
information flows more efficiently, providing a quantitative
underpinning to previous case studies of individual organiza-
tions where this is found in practice �13�.

We consider a simple growth model incorporating �i� and
�ii�. It is a discrete time process starting from a single root
node. Let G�t� denote the network at time t and N�t� the
number of nodes. At each time step, an integer number of
new nodes, ��t��1, arrive and must connect to the existing
network. In accord with �ii�, the fraction 0�c�1 of re-
sources dedicated to optimizing new growth must be shared
equally by all ��t� arriving nodes. Thus, each arriving node
sees only k�t�= �c /��t���N�t��� randomly chosen candidate
parent nodes, where � determines the scaling of resources
and system size, e.g., �=1 is linear scaling. It then chooses
the one candidate parent that is optimal in some sense �with
degeneracy broken by a random choice� and connects to it.
Even the simple criterion that optimal is the candidate closest
to the root node will demonstrate the importance of feed-
back.

To elaborate on �i�, the efficiency of information flow on
G�t� quantifies the network fitness F(G�t�) and is measured
by the characteristic time scale �c �see below and �10��, for a
weighted random walk on G�t�. Other measures exist, e.g.,
�14�, yet �c is used herein due to its simplicity. F(G�t�) is
assessed every � time steps. If it is found to increase, the
system is rewarded by increased arrival rate �. If it de-
creases, the system is penalized by decreased �. Thus, start-
ing from initial value �0�1, due to feedback, ��t���t
evolves as
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�t+1 = ��t if F„G�t�… = F„G�t − ��… ,

�t + 1 if F„G�t�… 	 F„G�t − ��… ,

max��t − 1,1� if F„G�t�… � F„G�t − ��… .
� �1�

� is thus a tunable parameter and our goal is to use feedback
to tune � during the growth process to build larger and more
efficient structures.

We capture a basic feedback loop �Fig. 3�b�, inset�. For a
given c, as � increases, c /� decreases, generating less effi-
cient structures �i.e., bigger �c� which will curtail the growth
rate, and vice versa. There is a direct analogy to a business
enterprise or an army, where an increase in the rate of em-
ployment leads to a smaller portion of resources given to
optimizing the attachment of any individual new member.
Thus, during rapid growth spurts, hiring is likely less optimal
than during periods of slow growth. All techniques used
herein are applicable to networks, but for simplicity we con-
sider a tree where each arriving node connects to just one
parent.

The characteristic time �c is evaluated as in �10�, where it
was shown to be a performance metric for comparing alter-
nate network topologies. Applications to sensor and to mo-
bile network constructions are discussed in �15–17� and a
similar derivation of �c is in �18�. A random walk on G�t� is
considered, where the walker represents a message to be
communicated. We assume unicast communication �i.e., a
node exchanges messages with only one other node at a
time� and that all nodes constantly attempt to transmit mes-
sages. More specifically, if node i is connected to di neigh-
bors, it successfully transmits on average 1 /di fraction of the
time to one neighbor chosen at random �i.e., with probability
1 /di�. The remaining 1−1 /di fraction of the time transmis-
sion is not successful and the message remains on node i,
waiting to be transmitted. The state transition matrix P de-
scribes this process, where element Pij is the probability of
the message passing from node i to j at any discrete time
step, with Pii the probability of an unsuccessful attempt.
Pij =0 if i and j are not directly connected in G�t�; otherwise

Pij = �1/di
2 if i � j ,

1 − 1/di if i = j .
	 �2�

P is column stochastic and irreducible. Let ri and v� i denote
the eigenvalues and eigenvectors of P. By the Perron-
Frobenius theorem, there is one eigenvalue r1=1 correspond-
ing to the unique steady-state distribution. All remaining ei-
genvalues have 
ri
�1 and are modes that decay to the
steady state. The characteristic time �i for mode i to decay by
a factor of 1 /e is defined by the equality P�iv� i= �ri��iv� i and
setting 
ri
�i =1 /e. The longest characteristic time �c results
from r2 �the largest ri�1�. Rearranging, �c=−1 / ln 
r2
.

To implement Eq. �1� we need to compare F�G� for two
networks with different sizes. Yet as N increases, �c typically
increases. No rigorous results exist describing the relation-
ship. We find empirically that ��c�N��
 ln N
, where 
 de-
pends on c and �, as shown in Fig. 1. Fitness of any particu-
lar realization is thus evaluated as F�G�=−�c / ln N
 �relative
to the ensemble of networks with those specific values of c,
�, and N�. Note, the negative sign is due to a larger �c being
less fit.

We analyze the model above via computer simulation,
implementing it in R and visualizing results with GRAPHVIZ

�19�. First we consider no feedback �� constant� and linear
scaling of k�t�= �cN�t� /��. The notation �a� denotes the clos-
est integer greater than or equal to a, used since k, the num-
ber of candidate parents, must be an integer. Linear scaling
provides intuition on how c /� tunes the structures. There are
two limiting behaviors: c /�=1 �i.e., k=N� generates a star
topology; and c /�→0 �i.e., k=1� generates exactly random
recursive trees �20�. Figure 2 shows representative networks
grown with three different fixed values of c /�, with maxi-
mum node degree dM and maximum depth hM indicated.

On incorporating feedback �Eq. �1� with � finite�, � be-
comes a tunable parameter. For fixed c, as � increases the
system moves toward k=1 �adding new layers of hierarchy�.
As � decreases the system moves toward k=N �filling in
existing levels of the hierarchy�. Thus adjustments in � tune
the levels of hierarchy �and the degree assortativity �21��.
Figure 3�a� shows a typical network grown with feedback
where c=1 /3, �0=1, and �=2, grown to size N=200. It has
the same initial conditions and final size as in Fig. 2�b�;
however, with dM =17 it resembles a more balanced version
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FIG. 1. �Color online� Data points are the expectation value
��c�N�� of 1000 independent realizations with c=1 /3 and varying
values of � as indicated. We find ��c�N��
 ln N
 where 
 depends
on c and � as shown in the inset.
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FIG. 2. �Color online� With no feedback networks range from
stars �a� to random recursive trees. Example of networks with �a�
c /�=1, N=16, �b� c /�=1 /3, N=200, �c� c /�=1 /10, N=200, with
maximum degree dM and depth hM indicated.
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of Fig. 2�c�. Also, the root is no longer the highest-degree
node. Figure 3�b� shows the evolution of ��t� for this real-
ization, which is representative of the typical behavior ob-
served �in particular, the final steady-state oscillation�.

For larger networks, the consequences of linear scaling
between k�t� and N�t� become manifest even in the absence
of feedback. With no feedback, using k�t�= �cN�t� /��t��
quickly leads to a “condensed” structure where all new nodes
join with depth h�2. Much of the analysis in �9� applies
here, except now k�t� is a function rather than a fixed con-
stant. Let Qj�t� denote the number of nodes at depth j, and
� j�t� the expected number of nodes at depth j in the candi-
date set, � j�t�=k�t�Qj�t� /N�t�. Boundary conditions are
Q0�t�=1 for all t�0, and Qj�0�=0 for all j�1. We can
explicitly calculate the exact recurrence Q1�t�=�n=1

t−1 k�n� /n.
Approximating the discrete sum by integration, for k�t�
=cN�t� /�, we find Q1�t��cN�t� /� and accordingly �1�t�
= �c /��2N�t�. Thus once N�t�	Nx= �� /c�2, �1�t�	1, and
with high probability all further incoming nodes join with
h�2. Figure 4�a� shows this crossover of the depth distribu-
tion for fixed c /�=0.02 �with crossover length Nx=2500�.

For sublinear scaling, such as k�t�= �c�N�t� /��t��, conden-
sation to h�2 can be avoided. Q1�t��2c�N /�, and thus
�1=2�c /��2�1 so long as c /��1 /�2 �independent of N�.
Yet, we eventually see condensation to depth h�3 happen
once Q2�t� grows large. Asymptotically Q2�t�
=��k�n�Q1�n� /n�dn�2c2N /�2. Once �2�t�=2c3N1/2 /�3	1,
all subsequent nodes join with h�3, which occurs at cross-

over length Nx=0.25�� /c�6. Figure 4�b� shows the evolution
of the depth distribution for N�Nx with c /�=0.02 �here
Nx=4
109�. It becomes more sharply peaked with increas-
ing N and shifts toward lower average depth but remains
concentrated well above the final condensed state. In general,
we can show that k
N1/a, for a any integer, ultimately leads
to condensation at depths h�a+1, with crossover as large as
Nx
�� /c�a�a+1� �22�. For logarithmic scaling, k�t�
= �c ln�N�t�� /��t��, the peak of the depth distribution in-
creases as j=ln N / ln ln N, and collapse is avoided altogether
�22�.

Now that the dependence between k�t� and N is under-
stood in the absence of feedback, we can incorporate feed-
back. We are interested in realistic values of c
1 /3 and
networks of N
1000 for which square-root scaling, k�t�
= �c�N�t� /��t��, is sufficient to avoid crossover. We numeri-
cally generate ensembles of 100 independent realizations at
various values of c and �0, all of which produce similar
results. Table I summarizes numerical results for c=1 /3 and
�0=3 �here Nx
105�. Column 2 is the baseline behavior
with no feedback. Comparing this with columns 3 and 5
shows that feedback leads to more efficient networks grown
to the same size �N=501� in less time, with greater depth and
lower maximum degree. Comparing column 2 with 4 and 6
shows that, in a given time interval, with feedback, networks
grow about twice as large and have improved efficiency. In
general, we find that these desirable outcomes are enhanced
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FIG. 4. �Color online� Depth distribution for c /�=0.02. �a� Lin-
ear scaling, k
N, results in condensation to h�2 for N	Nx
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FIG. 3. �Color online� �a� A typical network grown with feed-
back. Here c=1 /3, �0=1, N=200, and �=2. This network interpo-
lates dynamically between those in Fig. 2. �b� ��t� for this realiza-
tion. Inset: schematic of feedback loop.

TABLE I. Average network properties, over 100 independent realizations, for c=1 /3, �0=3, and k�t�
= �c�N�t� /��t��. Comparing columns 2, 3, and 5 shows that with feedback networks grow to be of size N
=501 in much shorter time and are more efficient �smaller �c / ln N
�. They also have greater maximum depth
and lower maximum degree. Comparing columns 2, 4, and 6 shows that, in a given time interval, networks
with feedback grow to be to about twice the size and are more efficient.

�→� �=5, Nstop=501 �=5, tstop=167 �=1, Nstop=501 �=1, tstop=167

�N�t�� 501 501 956�11 501 1101�7

�time� 167 89.3�0.5 167 77.1�0.6 167

�h� 3.08�0.02 3.41�0.03 3.72�0.03 3.38�0.02 3.76�0.02

�hM� 6.3�0.7 7.09�0.08 7.72�0.08 7.10�0.08 7.82�0.09

�dM� 32.2�0.6 25.2�0.4 31.1�0.4 24.8�0.4 32.7�0.5

��c / ln N
� 0.057�0.001 0.014�0.001 0.014�0.001 0.014�0.001 0.016�0.001
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the more often feedback is evaluated. The time required to
attain N=501 decreases linearly with decreasing � and the
network size attained in an allotted time interval increases
linearly with decreasing �. Of course, each time feedback is
assessed resources are needed. In our numerical implemen-
tation, they are computational resources. Determining the op-
timal value of � would require assessing the trade-off be-
tween this increase in resources and the enhanced network
properties. For ��10, our simulations do not show signifi-
cant sample-to-sample fluctuations in �F�G��. An exhaustive
study of self-averaging in networks �23� with feedback may
be discussed elsewhere �22�.

In summary, we introduce a general framework for incor-
porating feedback into network growth models. Proof of con-
cept is demonstrated using a simple model of a hierarchical
network where limited resources are shared among all arriv-
ing nodes, vying to minimize their distance to the root. Feed-
back leads to growth of larger, more efficient structures. Lin-
ear scaling of resources results in crossover to a trivial
condensed structure which can be considerably delayed with
sublinear scaling. In the context of a growing organization,
this suggests sublinear scaling is necessary once N
1000. It
may be possible to obtain rigorous results for this model of

network growth with feedback by interpreting c /� as a
branching rate or by proving convergence of ��t� to steady-
state oscillation.

The general framework proposed herein allows flexibility
in choosing other growth models, communication models be-
tween nodes Pij �e.g., broadcast rather than unicast�, and
fitness functions F(G�t�) �e.g., fitness landscapes �24� mod-
eling random evolutionary pressures�. Such alternate choices
of F(G�t�) may overcome the current limitation that global
topology information is required to assess �c. An alternate
growth model, where nodes maximize their distance to the
root, also seems to demonstrate similar effects of feedback.

Other recent models that could provide mechanisms for
introducing feedback are a model of two interacting net-
works �25�, a generative model where loops within a net-
work are considered as potential feedback channels �26�, and
the layered network framework of �27�.
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IPAM’s “Random Shapes” workshops are gratefully
acknowledged.
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