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1 Mean value of pixels versus Principal Component Analysis

We have conducted a principal component analysis (PCA) of the cropped portion of the images
obtained by videographing the eyes for the purpose of dimensional reduction. Let Zij(t) denote the
pixel image matrix at time t, of the cropped portion. In the main text, we chose 〈Z(t)〉, the mean
value of pixels of the cropped region for each frame obtained by decomposition from the video.
To contrast with 〈Z(t)〉, herein we study the time series of λk(t), where, k denotes all principal
components which are obtained from the matrix Zij(t) at time, t.

We ensure that there is no significant variation of the principal components over time, as ob-
served in Fig. S 1. The first principal component, PC1, alone retains about 55% of the total
variance of the data and the first three principal components collectively retain about 82%. To
contrast with the mean pixel value, 〈Z(t)〉; herein we choose to create a network from the time
series of the first principal component, or the leading eigen value, λ1(t), obtained from the matrix
Zij(t) at time t. The procedure of creating the network from the time series of PC1 is exactly
identical to that of creating the network from 〈Z(t)〉, as detailed in the main text.

Comparing Fig. 2 of main text and Fig. S 2 of SI, it is observable that there is essentially no
difference in the nature of classification inferred from the cumulative distributions of edge between-
ness centrality. As evident, the former has been obtained by using 〈Z(t)〉 and the latter by using
the first principal component. Thus, calculating the spatial mean of pixels of the cropped portion
essentially gives the same results and is obviously far less computationally expensive than PCA.

As evident from Figs. S 3 and S 4, it is evident that the networks cannot be differentiated upon
mere visualisation. Further topological analyses are necessary.

1



0.0

0.5

1.0

0 50 100

V
a
r
i
a
n
c
e

t

PC1
PC2
PC3

PC1 + PC2 + PC3

Supplementary Figure S 1: Fraction of the total variance captured individually and collectively
by the first three principal components as a function of time.

Supplementary Figure S 2: Cumulative distributions of edge betweenness centrality metric for
networks mapped from pooled thermal imaging time series for healthy eye and dry eye groups using
the first principal component obtained from the cropped portion of images.
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Supplementary Figure S 3: Visualising networks using the mean value of pixels. A
network for healthy individuals and a network for dry eye patients, obtained after mapping from
the pooled thermal imaging time series using the mean pixel value as detailed in text, is drawn in
different layouts. (a),(b),(c),(d) depict the networks for healthy individuals. (e),(f),(g),(h) represent
the networks of ADDE patients. (a) & (e) represent spring layout, (b) & (f) represent circular
layout, (c) & (g) represent Fruchterman-Reingold layout, and, (d) & (h) represent random layout.
Obviously, the networks cannot be differentiated by mere visualisation. Further topological analyses
are necessary. 3



Supplementary Figure S 4: Visualising networks from the leading Principal Compo-
nent. A network for healthy individuals and a network for dry eye patients, obtained after mapping
from the pooled thermal imaging time series using the leading principal component as detailed in
text, is drawn in different layouts. (a),(b),(c),(d) depict the networks for healthy individuals.
(e),(f),(g),(h) represent the networks of ADDE patients. (a) & (e) represent spring layout, (b)
& (f) represent circular layout, (c) & (g) represent Fruchterman-Reingold layout, and, (d) & (h)
represent random layout. Obviously, the networks cannot be differentiated by mere visualisation.
Further topological analyses are necessary.
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2 Analyses of networks using multiple metrics

Distributions of topological metrics have been studied for both PC1 and 〈Z(t)〉 and observed to
exhibit similar behaviour. To avoid redundancy, here we present results for only 〈Z(t)〉 in Figs. S 5,
S 6, S 7 and S 8. Below, we examine standard network metrics like degree, closeness centrality and
betweenness centrality of nodes. Similarly, for edges, we study edge proximity and edge betweenness
centrality of edges. Edge betweenness centrality clearly serves as the best classifier between healthy
individuals and patients with dry eye disease. This is true for both PC1 and 〈Z(t)〉 as reflected in
Fig. S 2 and Fig. 2 of main text respectively.

2.1 Degree of nodes

The degree of a node is the total number of edges incident on that node. Since our networks
are directed, degree of each node is the sum of its in-degree and out-degree. Cumulative degree
distribution for control and ADDE group is shown in Fig. S 5.

Supplementary Figure S 5: Cumulative degree distribution for networks mapped from pooled
thermal imaging time series for healthy eye and dry eye groups.

2.2 Closeness of nodes

Closeness centrality, Ci, of any node, i, is the inverse of the sum of its shortest distance d(i, j),
calculated using the directed shortest paths, with every other node, j, in the network. Thus,

Ci =
N − 1∑
j

d(i, j)
(1)

where N is the total number nodes in the network. Cumulative distributions of Ci for control and
ADDE group is plotted in Fig. S 6.
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Supplementary Figure S 6: Cumulative distributions of node closeness, Ci, for networks mapped
from pooled thermal imaging time series for healthy eye and dry eye groups.

2.3 Betweenness of nodes

Betweenness centrality, Bi, of a node, i, is the ratio of the number of directed shortest paths, σ(s, t|i),
between node, s, and node, t, which pass through node, i, and the total number of directed shortest
paths, σ(s, t), between node, s, and node, t, in the network. Mathematically, it is defined as:

Bi =
∑
s6=t

σ(s, t|i)
σ(s, t)

(2)

Cumulative distribution of Bi for control and ADDE group is demonstrated in Fig. S 7.

2.4 Edge proximity of edges

Edge proximity of any edge, e, is the inverse of the sum of it’s shortest distance d(e, f), with every
other edge, f , in the network. Thus,

EP =
M − 1∑
f

d(e, f)
, (3)

where, M is the total number edges in the network. Cumulative distributions of edge proximity for
control and ADDE group is shown in Fig. S 8.
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Supplementary Figure S 7: Cumulative distributions of node betweenness, Bi, for networks
mapped from pooled thermal imaging time series for healthy eye and dry eye groups.

Supplementary Figure S 8: Cumulative distributions of edge proximity centrality for networks
mapped from pooled thermal imaging time series for healthy eye and dry eye groups.
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