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Abstract Understanding the mechanisms of evolution of

cooperation and its sustenance has gathered momentum

since the last few decades of the twentieth century. How-

ever, the complete picture is yet to emerge. Evolutionary

game theory aims to model evolutionary dynamics in a

population by drawing on the principles of game theory.

Spatially restricted interactions, such as in ecological sys-

tems, are rather common in nature. When interactions

among the individuals in a population are structured, the

outcome of the game is significantly different from that of a

well-mixed population. In this mini-review, targeted

towards a very broad audience of all backgrounds, we

summarise some of the critical research by evolutionary

biologists, computer scientists, mathematicians and physi-

cists on evolutionary games in structured populations. We

also discuss the influence of structure on evolutionary

games in diverse scenarios ranging from laboratory envi-

ronments to multiplex networks. Along the way, we also

try to harmonise a few conflicting results in the literature.

Keywords Game theory � Complex networks �
Structured populations � Evolutionary dynamics

1 Introduction

Interactions, chiefly cooperative, among single cells give

rise to multicellular units, living systems and a plethora of

complexity. Cooperative behaviour in the living world can

be observed in many life forms ranging from diverse

prokaryotic to eukaryotic populations around us. The

warning calls from sentinels to alert their meerkat brethren

from predators [1], the spirited defence by muskoxen to

save their young from the wolves [2], inter-species coop-

eration among bacteria for their survival and efficient

nutrient consumption [3], interactions of microbial com-

munities in the human gut [4] and many actions among

humans, societies and indeed nations [5] are a few exam-

ples of cooperation. A good number of studies on the

emergence of cooperation in games deal with rational

agents, who, by definition, act in their own self-interest.

Indeed, these agents can choose or modify their interaction

strategy depending on their circumstances, opponents and

their own prior experience. It is indeed intriguing that

despite these agents choosing only those actions which

benefit themselves, cooperation often unaccountably arises

in the population. Mention must also be made of altru-

ism—which is a term usually reserved for agents whose

actions benefit others, even at the cost of their own interest.

Interestingly, cooperative acts are often exploited by

free riders according them undue fitness advantages and

giving rise to social dilemmas. For example in microbes,

free riders or defectors can bypass the expense of metabolic

costs for cooperative acts. Naively, one would infer that as

a result of competition defectors should always achieve

higher reproductive fitness, ultimately emerging superior in

the evolutionary run. But then, cooperation still emerges

and in fact is rather ubiquitous. How and why this is so

remains to be completely solved. Some well-known bio-

logically motivated explanations about the maintenance of

cooperation have been offered [6], which are under

increasing study of late [7–9]. Moreover, there has been

some work on ‘‘assured fitness returns’’ model showing
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how group living evolves over solitary life, independent of

genetic relatedness [10].

Towards the latter half of the twentieth century, devel-

opment of game theory ushered a tremendous change in

our understanding of evolutionary processes. The names of

William Hamilton and Robert Trivers deserve mention as

they were early pioneers in using game theoretical concepts

in biology. Smith and Price [11] were the first to introduce

game theory into evolutionary dynamics and became pio-

neers of the area which we now refer to as evolutionary

game theory. Significant early contributions to this field

were also made by Peter Taylor, Joseph Hofbaur and Karl

Sigmund.

There are various schools of thought regarding the

driving influence of evolutionary processes. According to

‘‘selectionists’’, a strategy dependent payoff difference is

the main driving force of evolution. Building on this

notion, mechanisms such as kin selection [6, 12], reciprocal

altruism [13–15], punishment [5, 16, 17] and network

reciprocity [18, 19] have been somewhat successful in

explaining how cooperation can be established. However,

these neo-Darwinian approaches still leave unanswered

questions. Apart from selectionists, there are ‘‘neutralists’’

who believe that, not only the interaction payoffs, but also

the stochasticity in death and birth systems, mutations or

fluctuations in genetic material, etc. [20, 21], have signif-

icant influence on evolutionary processes. According to

them, evolution is a consequence of random fluctuations

which is inherent in nature. Stochasticity can inspire sys-

tems to select cooperators in spite of their lower fitness

advantage, over defectors. There are also some researchers

who unify both approaches in terms of the mean extinction

time. According to them, if stochasticity of a system is

large, evolution is neutral. However, in less stochastic

regimes evolution is mainly governed by selection [19].

The outcome of evolutionary games may be decisively

altered by the imposition of structure on interactions within

a population and is the focal point of this review. In

structured populations, spatial factors introduce limitations

in interaction between individuals. Furthermore, hetero-

geneity of connections might prove to be beneficial

towards maintenance of cooperation [18], though it

depends on a number of conditions [22]. Drawing upon

research which considers a constant population [23, 24],

some recent works have included growth of the population.

One such work observed that a transient but robust increase

in cooperation can be found in growing populations [20].

The coupling of demographic noise (arising from inherent

stochasticity) and external noise (arising from environ-

mental carrying capacity) significantly changes the fixation

probability of mutants in evolutionary games [21]. We

discuss all of these and more, in detail in the following

sections.

2 Evolutionary game theory

Classical game theory was originally developed to study

mathematical models of conflict and cooperation between

rational individuals [25]. It was introduced to evolution by

Maynard Smith and Price [11], and this successful fusion

gave rise to the popular field of evolutionary game theory.

Before the application of game theory, evolution was

studied as a time-dependent continuous process, where the

evolutionary outcome was stochastic. Application of game

theory confers the freedom to predict evolutionary out-

comes as a steady-state frequency of sub-populations with

different strategies, which are selected using the rules of

the game. In classical game theory, players are considered

as rational individuals and are allowed to chose their own

strategy. However, in evolutionary game theory, strategies

remain invariant and players are unable to choose them. In

game theoretic literature, strategies associated with such

mechanisms are sometimes referred to as pure strategies

[26]. This ‘‘purity’’ arises because the behaviour of an

organism is genetically predetermined and not an available

option to be chosen by it at will.

To explain this restriction on strategy, let us present an

example from the bacterial domain. Consider two popula-

tions of Escherichia coli. One of the two, the mutant

population has the capacity to degrade beta-lactam antibi-

otic due to some additional gene/(s), whereas the native

one is sensitive to the said antibiotic. Now, let us place

these mutant cells with the native E. coli cells together in

an environment laden with a reasonable quantity of beta-

lactam antibiotic. Apart from happily thriving, the mutant

strain would wittingly or unwittingly help even the native

cells to grow because it would degrade the antibiotic for its

own survival. This ‘‘benign’’ behaviour of our mutant

E. coli and the resultant ‘‘cooperation’’ witnessed in such

microbial systems does not really arise out of a surge of

altruism or kindness. It is simply because our mutant is

genetically programmed to behave as it does. The

dynamics of such systems has been studied experimentally

[3].

Therefore, unlike classical game theory, there are a few

assumptions which are required for evolutionary games.

These are as follows:

• Every individual in a genetically homogeneous popu-

lation is considered to be genetically predetermined to

play a single strategy, which is encoded in the

organism’s genome.

• As these strategies are pure and genetically predeter-

mined, mixed strategies would be strictly avoided by

any individual in such genetically homogeneous

populations.

• The population should be large enough.
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• There would be some level of genetic, metabolic or

physical overlap for mutual interaction.

• All players follow the same strategy update rules.

Considering all of these assumptions, evolutionary games

describe the dynamics of a population on evolutionary time

scales. In classical game theory, an important concept is the

Nash equilibrium [27]. It can be thought of as a stable state

of the system attempting to capture the interaction of

different participants in a non-cooperative game. If the

strategies of the other players remain unchanged, no

participant can gain by a unilateral change of strategy.

In evolutionary game theory, instead of using the Nash

equilibrium for an equilibrium description, we use evolu-

tionary stable strategies (ESS) [26]. ‘‘Evolutionary stabil-

ity’’ implies such a genetic composition of a population,

which no other mutant genotype can successfully invade by

evolutionary processes like natural selection. ESS is always

chosen over any other mutant strategy by the process of

natural selection. When every individual of a population

abides by an evolutionary stable strategy, the strategy of

any other mutant cannot subjugate the population by nat-

ural selection. One can also encounter genetically hetero-

geneous populations containing different mutant strains of

the same species. Such situations might be handled better

by using mixed strategy dynamics, which are just begin-

ning to be explored [28, 29]. In some games like the Hawk-

Dove game (not discussed here), the presence of more than

one genetically imprinted strategies is also possible [30]. It

should be especially noted that incorporation of rationality

in a player’s decision-making ability can alter the game

outcome significantly [32].

3 Games between two players

Let us consider a two-player game where one of the

players, C, always cooperates to produce public goods. The

other one, D, uses it without bearing any cost of production

and can thus be called a defector. The players will always

follow a pure strategy as they are genetically programmed

to do so. The outcome of their interactions is represented

by the following ‘‘payoff’’ matrix:

C D

C R S

D T P

Here, the rows represent the payoffs of C and D. From this

matrix, we can see that mutual cooperation leads to a

payoff, R, for both cooperators. Interaction between a

cooperator and a defector results in a payoff, T, for the

defector and a payoff, S, for the cooperator. T denotes the

payoff for temptation to defect, while S is called the

‘‘sucker’s payoff’’. If both defect, both will be rewarded a

punishment, P.

Let us now think at the level of a population comprising

these two types of participants or sub-populations, namely

cooperators, C, and defectors, D. The frequency of coop-

erators is denoted by x. Therefore, the frequency of the

defectors is ð1� xÞ. As per the selectionist view, we can

presume that the expected payoff of a player is the prime

measure of its fitness or reproductive ability. Let us denote

this fitness or expected payoff by fC and fD for cooperators

and defectors, respectively.

fC ¼Rxþ ð1� xÞS ð1Þ

fD ¼Txþ ð1� xÞP ð2Þ

We can calculate the average fitness of the population,

/, from Eqs. 1 and 2. Now, the difference between the

fitness of an individual cooperator or defector and the

average fitness of the population can arguably drive the rate

of change in frequency of cooperators or defectors.

/ ¼xfC þ ð1� xÞfD ð3Þ

_x ¼ðfC � /Þx ð4Þ

Substituting Eq. 3 in Eq. 4 and then using the values of

fC and fD from Eqs. 1 and 2 in Eq. 4, we get,

_x ¼ ððR� S� T þ PÞx� Pþ SÞxð1� xÞ ð5Þ

The outcome of this simple nonlinear differential equation

depends on the elements of the payoff matrix and the sta-

bility of the fixed points indicate the evolutionary

stable strategy for the game under consideration. We dis-

cuss some cases below:

• If T [R[P[ S, the overall fitness of D is higher

than C. So, in this situation C is always exploited by

D. This type of game is called Prisoner’s Dilemma

(PD). Here, defection is always the best strategy—

irrespective of the strategy of the opponent and

selection favours defectors. PD is named after the

well-known social dilemma of two prisoners. Instead of

cooperating among each other which would be mutu-

ally beneficial—both of them tend to defect from one

another, due to factors such as enticement by law

enforcement.

• If T\R and P\S, the situation is exactly opposite to

that in Prisoner’s Dilemma. Here cooperators dominate,

as their fitness is always higher than defectors. This

type of game is known as the Harmony Game.

Harmonisation in social structure can emerge due to

players helping each other. This game is comparatively

lesser studied as there is a tendency for maintenance of

cooperation.
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• When T [R[ S[P, then the system will converge

to equilibrium at

xeq ¼ ðP� SÞ=ðR� S� T þ PÞ ð6Þ

Under these conditions, both C and D coexist. This type

of game is known as the Chicken game or Snowdrift

game. Let us picture two drivers heading on a road

towards each other from opposite directions. If one of

them does not change direction, a crash is very likely to

occur. The one who does change direction is supposed

to have ‘‘chickened’’ out! Similarly, for the snowdrift

(SD) game, imagine two drivers sitting in their own car,

which are separated by a pile of snow on a chilly day.

Let us presume that neither is driven by kindness or the

compulsion to reach his/her destination quickly. Even-

tually, one of them might do the hard job of shovelling

and the ‘‘smarter’’ person just sits in the car, perhaps

enjoying some hot coffee over loud music.

• If T\R and S\P, then xeq is a point of unstable equi-

librium. Such games are known as coordination games.

Here, it is beneficial for both players to have the same

strategy, as if in coordination.

Dealing simultaneously with four parameters of a

system is obviously non-trivial. Therefore, we may

consider R ¼ 1 and P ¼ 0 [32]. With this choice,

regions representing different games on the T � S plane

are shown in Fig. 1.

4 Structured populations

In unstructured or mixed populations, maintenance of

cooperation in social dilemmas can be explained by kin

selection [6], direct reciprocity and indirect reciprocity

[33]. However, we will soon see that in structured popu-

lations, group selection and network reciprocity caused by

structural restrictions may lead to significant alterations in

the game dynamics. Various types of structures can be used

to model populations, most common among them being

graphs. It is worthwhile to mention here that throughout

this review, we will use the terms graph and network

interchangeably. Networks have been used in many con-

texts ranging from image processing and non-invasive

diagnostics to structural optogenetics, intra-protein con-

tacts and fitness landscapes [34–40]. Below we give a brief

introduction to network structures which are commonly

used to model evolutionary games on networks. It should

be noted that mathematical simplifications such as denoting

well-mixed populations by complete graphs might lead to

elegant closed form solutions. However, in reality an

individual may not interact with all its neighbours at a time.

Therefore, studies on more realistic structures are highly

desirable.

Lattice: Lattice is an extensively used form of regular

graphs and is often also referred to as grid. They possess

the simplest of graph topologies. Commonly used exam-

ples of lattices include triangular, square or rectangular,

hexagonal, and so on. A square lattice is depicted in

Fig. 2a. In such regular structures, random long-range

connections are absent. It represents a population where

each individual can interact only with a finite number of its

(usually nearest or nearer) neighbours.

Cycle graph: Cycle graphs also sometimes referred to as

circular graphs are exemplified in Fig. 2b. It is a graph that

contains a single cycle for a given number of vertices

connected in a closed chain. In an undirected cycle graph,

every vertex is connected with two of its adjacent vertices,

resulting in a degree of 2 for each vertex. This is also a

regular structure where long-range connections are absent.

Random regular graph: In a random regular graph, each

node is connected with k other randomly selected nodes.

This is a ‘‘regular’’ structure since all nodes have the same

degree albeit with a random connectivity pattern. Random

long-range connections are obviously present in such

graphs. It represents a population where each individual

interacts with a fixed number of individuals randomly

located in the population. A random regular graph with

average degree 2 is represented in Fig. 2c.

Complete graph: In a complete graph, each node is

connected with every other node as shown in Fig. 2d. The

total number of edges in a complete graph is given by

NðN � 1Þ=2 where N is the total number of nodes. It rep-

resents a structure where each individual interacts with

every other individual of the population. It can be thought

of as the graphical equivalent of a well-mixed population.

Small-world graph: Small-world topology can be gen-

erated by various algorithms. In the well-known Watts–Fig. 1 Different types of games in T–S plane
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Strogatz model, one can start with a regular ring lattice of

N nodes with an even mean degree, K, where

N � K � lnN � 1. Upon rewiring every edge with a

probability above a certain threshold to a randomly chosen

node in the network, a small-world network with random,

long-range connections can be achieved. A prime feature of

a connected SW graph is that one can reach a given node

from a randomly selected node by a (rather) small number

of hops. A quantity of interest is the ratio of number of

closed triplets of vertices in the network to the number of

all triplets (open and closed) of vertices. For any SW

network, this quantity could be even up to a few orders of

magnitude higher than those obtained for randomised

versions of the same network. These graphs are obviously

not regular and possess a reasonable degree of heteroge-

neous connectivity. A small-world graph is represented in

Fig. 2e.

Scale-free graph: Throughout this review, whenever we

mention a ‘‘scale-free’’ graph or network, we strictly mean

such graphs which possess a power law degree distribution.

Obviously, scale-free networks are characterised by highly

heterogeneous connectivities implying a large variation in

the degree of nodes. A number of methods can generate

scale-free networks [41]. A popular way to generate these

networks is through the mechanism of preferential attach-

ment [42, 43]. In the Barabasi–Albert model of network

growth [42], one starts with m0 number of nodes. At each

time point a new node is attached to the existing m nodes,

where m�m0. Thus, exactly, m number of edges are added

to each new vertex, appearing in the graph. The attachment

probability depends on the degree of previously existing

nodes expressed as Pi ¼ ki=
P

ki, where ki is the degree of

ith node. In this manner, ‘rich keep getting richer’. In the

asymptotic limit, the degree distribution of the network is a

power law. In this network structure, a few nodes called

‘‘hubs’’ possess connectivities which aremuchmore than the

average degree. A scale-free graph is represented in Fig. 2f.

5 Structural restrictions in evolutionary games

Interactions allowed only among neighbouring agents,

defined according to a specified connection topology, had

been studied early on by some of the pioneers of game

theory. Specific mention must be made of Axelrod, who

introduced the concept of territoriality as one of the four

factors of social structure which helps to maintain coop-

eration by spatial limitation. Additional mention must be

made of the use of agents ‘playing’ with their neighbours

on a two-dimensional lattice [44]. Social constrictions like

race, sex, colour, etc., which impose specific spatial limi-

tations in social structures and their effects on maintenance

of cooperation had also been studied in considerable detail

[45].

Spatial restriction inside a population was considered in

a seminal work by Nowak and May. Individuals of the

population are located on the vertices of a square lattice

and are allowed to interact only with their nearest neigh-

bours [32]. Imposition of (structural) restriction on the

population leads defectors (but not cooperators) to forgo

the luxury of accumulating payoffs from neighbours.

Structural restrictions limit the ability of an individual to

Fig. 2 Various graph topologies are used to describe structured

populations: a lattice, b cycle graph with average degree 2, c random
regular network with average degree 2, d a complete graph, e ‘‘small-

world’’ network with average degree 6 which was generated from a

regular network with rewiring probability 0.1, and f ‘‘scale-free’’

network with average degree 2. Here, scale-free and small-world

networks have 512 and 128 nodes, respectively, while all the other

networks have 20 nodes
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gain access to the overall strategy distribution in the pop-

ulation. In such situations, the lack of benefit gained by the

neighbours of a defector inhibits the formation of clusters.

The emergence of such structure has been observed in

multiagent simulations in groups of cells having both

cooperators and defectors. Such structures depend on the

relevant set of biological and physical parameters [46, 47].

Also, it has been observed from computational studies that

mobility helps in assorting groups of cooperators in a well-

mixed population [48]. In regular network structures,

where the degree of all nodes is same, all individuals are

allowed to interact with the same number of neighbours. In

this scenario, defectors are again winners in the long run.

So, although interactions on regular spatial structures cre-

ate a more comfortable situation for cooperators than those

encountered by them in well-mixed populations—it even-

tually fails to establish cooperation in the long run. The

level of restriction varies with the heterogeneity of the

network, and graph topology affects the game outcome

[49, 50]. In heterogeneous structures, cooperation is

maintained better than in regular structures. This assump-

tion works reasonably well in PD [51] and will be dis-

cussed in further detail in Sect. 7.

However, in snowdrift games, this scenario is slightly

different. Earlier, we saw that the equilibrium frequency of

mutual cooperation in snowdrift game in Eq. 6. Denoting

the cost to benefit ratio of mutual cooperation as r, we can

derive the equilibrium frequency of cooperators from Eq. 6

to be ð1� rÞ in well-mixed populations. It is seen that, for

small values of r, cooperator frequency is higher than the

equilibrium frequency in snowdrift games. However, it

decreases for higher values of r [17]. Under structural

restrictions, the game outcome differs in case of SD as

compared to PD. Cooperator fraction in a structured pop-

ulation is generally lower than it is in a well-mixed mixed

situation [52].

6 Fitness and reproduction

Evolution of a population occurs by an update of the

strategy of individuals resulting in an overall change in the

respective fraction of sub-populations. The fitness of a

player as a function of its accumulated payoff depends on

the strategies that its neighbours possess. As the full

mechanisms governing evolution are not yet well under-

stood, it is safe to assume that there are many factors

ranging from metabolic state of the players to environ-

mental conditions on which a player’s total fitness depends.

Keeping this in mind, most researchers assume that the

fitness accumulated from the game payoff is a small part of

the total fitness [19] which is basically the weak selection

process. Indeed, even from the neutralist point of view this

is acceptable as weak selection introduces additional

stochasticity in the system, which is more realistic [53].

Reproductive prowess is a major driving force of the

evolutionary dynamics. In evolutionary game theory, two

types of reproductive mechanisms have been thoroughly

studied: (1) Moran process [54] and (2) Wright-Fisher

process [55]. In Moran process, asynchronous reproduction

in a population takes place. Here, at a given time, one

individual is selected randomly to reproduce where another

individual is chosen to die according to its fitness. Such

upgradation promotes cooperation in the snowdrift game

for genetically heterogeneous populations following mixed

strategies [56]. In the Wright-Fisher model, the mechanism

of reproduction is different. Here, all individuals in a

population reproduce at the same time and the number of

offspring is proportional to their ancestor’s fitness. The

next generation is formed by randomly choosing individ-

uals from the set of offspring. Unlike the previous case,

here cooperation is opposed in the snowdrift game for

genetically heterogeneous populations [56]. In both pro-

cesses, the population size is maintained constant. How-

ever, fitter individuals may fix themselves in the population

by growing faster, which results in an expansion of the

population. We will discuss this in detail in Sect. 12.

One way to measure whether a mutant is favoured or

opposed by natural selection is to calculate the fixation

probability of that mutant [19]. Fixation probability is the

probability that a single mutant starting from a random

position turns the whole population into its own type. If

there are N number of individuals in a population, then the

fixation probability of a natural mutant is 1 / N, if it is

neither favoured nor opposed by natural selection. If the

mutation is advantageous, the fixation probability will be

greater than 1 / N. However, if the mutant is deleterious,

the fixation probability will be less than 1 / N. In a

genetically homogeneous well-mixed population of size N,

the fixation probability of a certain mutant with relative

fitness r can be calculated using the moran process [54]. It

is expressed as,

p� ¼
1� 1

r

1� 1
rN

ð7Þ

There are a number ofways to follow theMoran process.Based

on reproduction and updating strategy, these are termed as

imitation updating, death–birth updating, birth–death updating.

In imitation updating, an individual will imitate the strategy of

its fittest neighbour. Death–birth updating occurs, when after

the death of an individual, the vacant position in the population

is occupied by one of its neighbours—in proportion to their

fitness. However, in birth-death updating, the progeny of an

individual replaces one of its weaker neighbours.
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It was reported that in regularly structured populations

[19], the fixation probability of a cooperator mutant in a

defector population could be higher than 1 / N. This could

happen when the ratio of benefit, b, to cost, c, of an

altruistic act is higher than the average number of neigh-

bours, k, i.e. b=c[ k. However, this simple rule is not

always obeyed in more heterogeneous structures like scale-

free graphs. From a qualitative point of view, it is clear that

if cooperation has to emerge in a low benefit regime, the

number of neighbours should decrease. This condition

resembles Hamilton’s kin selection rule, b=c[ 1=R,

whereR is the genetic relatedness as specified by Hamilton

[6]. We could draw an analogy between these two rela-

tions. If we consider a high genetic relatedness, then there

would be a small number of beneficial neighbours around

an individual in a structured population.

Apart from calculating the fixation probability of a

single mutant, we can also calculate the probability of

strategy upgradation of a single player at a particular time

point in an interacting population of two species having

different strategies subject to structural restrictions. In

regular structures, where all interacting individuals have

the same degree, the upgradation probability [57] is

expressed as:

Wij ¼
1

1þ exp � ðpj�piÞ
K

h i ð8Þ

Here, Wij is the probability of imitation of the strategy of

the jth individual by the ith individual. If pj [ pi, then the

change of strategy of the ith individual would occur. Here,

K is the amplitude of noise due to an irrational choice and

1 / K is the intensity of selection. When K ! 0, the ith

individual will change its strategy to that of the jth due to

the high intensity of selection. This is basically the ‘‘strong

selection’’ process. When K ! 1 or 1=K ! 0, the inten-

sity of selection is very weak and can be compared with

‘‘neutral evolutionary drift’’. The difference of payoffs then

becomes nearly inconsequential in the change of strategies.

In more heterogeneous structures like scale-free graphs,

the aforementioned noise varies hugely between individu-

als due to the heterogeneity of connections. Under this

condition, the updating expression [18] becomes,

Wij ¼
pj � pi

maxðki; kjÞD ð9Þ

In Eq. 9, D ¼ ðT � SÞ for PD, while, for SG, D ¼ ðT � PÞ.
ki and kj are the degree of the interacting individuals i and j,

respectively. Somewhat different from the inclusion of

intensity of selection at the time of upgradation, some

authors introduce it at the time of mapping the payoff to

fitness [19]. According to them, the fitness of individual

players accumulated from the game is a linear function of

its payoff. If pi is the accumulated payoff of the ith indi-

vidual, then its fitness is ð1� xþ xpiÞ, where ð1� xÞ is
the baseline fitness of every individual and x is the

intensity of selection.

7 Cooperation with heterogeneous connectivity

The regularity in the structure of the underlying interaction

network affects the outcome of the game. In Sect. 6, we

noted the specific conditions for the emergence of coop-

eration. However, in structures with more heterogeneous

connectivity such as scale-free networks, the outcome of

the game differs from that of those played on regular

structures. It was observed that scale-free topology has

some tendency to promote cooperation throughout a broad

range of game parameters like temptation in the case of PD

or the cost to benefit ratio for SG [18].

Upon an increase in the average number of neighbours,

the relative fraction of cooperators decreases [58]. These

results seem to be somewhat different from those of Ref.

[18] where the cooperator fraction increases with increase

in average degree of the scale-free network. At higher

degree, there seems to be an emergence of mean field

effects due to which the population tends to approach a

well-mixed condition. In this scenario, as cooperators are

forced to interact with many defectors, their fitness even-

tually decreases leading to a decrease in cooperator frac-

tion. It has also been observed that the mean clustering

coefficient of the network affects the overall cooperator

fraction. Scale-free networks with high clustering coeffi-

cient helps to increase cooperator fraction than on similar

networks with low clustering coefficient and low average

degree [58, 59].

To study the effect of graph topology on cooperation,

we carried out simulations of Prisoner’s Dilemma (PD)

game using the algorithm reported in Ref. [18]. Each net-

work consists of N ¼ 1024 nodes. With equal probability,

half the nodes are randomly chosen as cooperators and the

other half as defectors. For each round of the game, t,

payoffs of all individuals are determined according to the

current strategy of their neighbours. Temptation, or the

advantage of defection over cooperation, is represented by

b, which is the main game parameter. As discussed in

Sect. 2, values of T ¼ b[ 1, R ¼ 1 and P ¼ S ¼ 0 are

chosen. After the determination of payoffs in each gener-

ation, the strategy of each individual is updated syn-

chronously. For strategy upgradation of an individual, i,

one of its random neighbours, j, is selected and their

respective payoffs pi and pj compared. Individual i will

upgrade its strategy whenever pj [ pi with a probability

described in Eq. 9, where, D ¼ ðT � SÞ while ki and kj
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denote the respective degree of i and j. The final number of

cooperators are tracked over 1000 generations after a

transient time of 10000 generations. The process is repe-

ated for 100 network ensembles at every value of T. The

results are plotted in Fig. 3.

The above procedure can also be used to study snowdrift

(SD) games, setting D ¼ ðT � PÞ instead of the choice of

D ¼ ðT � SÞ as used in PD. In the setup of SD, we need to

consider T ¼ b, where, b[ 1, R ¼ ðb� 1=2Þ and

S ¼ ðb� 1Þ. P ¼ 0 as in Prisoner’s Dilemma. In SD, we

use r, which is the ratio of cost, c to benefit r for mutual

cooperation, where, c ¼ T � R.

It was observed that the distribution of defectors among

high-degree nodes decreases with time. But this effect

reduces when the power law degree distribution is replaced

by an exponential degree distribution. This inherent ten-

dency of cooperators to occupy hubs could possibly be

explained from a closer look at the situation. When a

defector is on a hub and surrounded by many cooperator

neighbours, it could accumulate payoff from all coopera-

tors and its relative fitness would increase. In this scenario,

the defector could exploit any of its cooperator neighbours

easily. But this would ultimately lead to an overall decrease

in the fitness of hubs as the defectors on hubs would tend to

not provide benefits to any of their neighbours. This non-

cooperative nature of the defectors restricts them to form

clusters in the network. In contrast, when a cooperator

occupies a hub, it would tend to increase its own fitness as

well as the fitness of all its neighbours. In this scenario, it

would be difficult for a defector to replace the cooperator in

the hub positions. Then, interconnections between the hubs

would ultimately increase the cooperator fraction of the

whole population [60].

From the above discussion, it might well seem that

networks with heterogeneity are more amenable to the

spread of cooperation. However, it should be cautioned that

this conclusion should be tempered and largely depends on

the interactions at the individual level [22]. In fact, the

cooperative advantage of heterogeneous graphs might well

be totally lost if instead of accumulating payoffs obtained

through game interactions, we were to average them.

However, this same difference of procedure does not alter

the outcome on homogeneous structures. Again, the rate of

game interactions is crucial. Heterogeneous graphs support

more cooperation than homogeneous graphs at lower rates.

However, at higher rates, it becomes hard to pinpoint the

role of heterogeneity in supporting cooperation. Finally, a

mutant’s fixation probability is affected by heterogeneity

which causes a bias where mutations occur in the popula-

tion [22].

8 Robustness of cooperation

Emergence and sustenance of cooperation on heteroge-

neous topologies like scale-free networks does not provide a

complete understanding of the evolution of cooperation

under diverse real-life conditions. Various kinds of fluctu-

ations are present in a population. In an earlier section, we

discussed about the effects of dynamical links in a struc-

tured population. Just like alteration of connections, the size

of the population is also quite likely to change. Individuals

would die due to natural causes, specific ecological inter-

actions and other reasons. Some studies [61, 62] concentrate

on the robustness of cooperation in scale-free networks

[63]. It has been observed that cooperation can be sustained

in PD games on scale-free networks, even after random

deletion of a significant number of nodes, which is used to

model death. But targeted deletions of hubs in the same

setup result in a significant decrease in the cooperator

fraction. This indicates that the degree of a node influences

its vulnerability. The probability of a node to be removed

during an ecological stress is proposed as,

Fig. 3 Figure shows results of

simulations on various networks

for population size N ¼ 1024

for Prisoner’s Dilemma game.

Scale-free networks tend to

promote cooperation. Inset:

notably, cooperator fraction

decreases with increase in

average degree, k, in scale-free

networks
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PðkiÞ ¼
kaiPN
i¼1 k

a
i

ð10Þ

Here ki is the degree of ith node and a tries to account for

the vulnerability in the network. At a\0, lower-degree

nodes are more vulnerable, and, a[ 0, higher-degree

nodes are more vulnerable. Thus, a lends clues into the

level of cooperation in scale-free networks [61].

9 Participation cost

It has been discussed above how heterogeneous connec-

tivity might promote cooperation under some conditions

[18, 22, 64]. However, interaction costs may alter the

scenario substantially. Obviously, cooperators having a

larger number of interactions bear more costs than coop-

erators having fewer number of interactions. Sometime

back, participation cost was introduced as the temperature

of the players [65]. Players having more interactions are

considered as ‘‘hot’’ players, whereas players having fewer

interactions are considered to be ‘‘cold’’ players. Thus,

hotter players are more likely to participate in the game

more often than colder players—in a given generation prior

to strategy upgradation. Denoting the participation cost for

each interaction as x, the payoff matrix becomes,

C D

C ðR� xÞ ðS� xÞ
D ðT � xÞ ðP� xÞ

This alteration of payoff matrix affects the outcome of

the game. It is observed that for various values of the

participation cost, overall cooperator fraction is also

altered. An inexpensive participation cost hardly affects

the overall cooperator fraction. But above a critical level,

cold players with any strategy always exploit the hot

players. As seen earlier, there is a tendency of cooperators

to occupy the hubs. Thus, for higher participation costs, the

cooperator fraction decreases [65].

10 Dynamical links

Up until now we have discussed about structures, where the

population size as well as links between individuals are

static. But in reality, the structure of the population could

well evolve with time. Later, we will discuss the effects of

population size in terms of birth and death of individuals.

In this section, we will concentrate on the dynamical

linking patterns among a given number of individuals. In a

structured population, as a rule of coevolution, individuals

may form new beneficial edges by deleting less beneficial

ones. The rule for adaptation of these new links could be

strategy independent [66, 67] or could depend on strategy

and performance [68, 69]. There are also some works,

where adaptation of new links depends on the attractive-

ness of performers [70] or satisfaction [71]. Additionally,

the environment where a game is staged could also be

factored in. There are various types of environmental

fluctuations due to which ecological interaction patterns are

significantly influenced. But many changes due to the

environment are random and can cause fluctuations in the

interaction structure. It has been observed that significant

random fluctuations in a structured population would lead

to mean field effects in the overall population, thereby

causing it to behave as a well-mixed one [72]. This effect is

more pronounced in homogeneous networks but can also

be witnessed to a lower degree in heterogeneous topologies

like scale-free networks.

11 Teaching ability and ageing of players

We have seen instances of how heterogeneous connectivity

might promote cooperation in a given population, under

certain conditions [22]. In such scenarios, the idea of an

individual’s teaching ability has also been introduced [73].

Obviously, no two individuals within a population are

identical and some individuals can possess greater influ-

ence to change the strategy of others. Therefore, these

influential individuals are better placed to change an

opponent’s strategy. As seen earlier, in imitation upgrad-

ing—the probability of replacement of the strategy of the

ith individual by the strategy of the jth individual is given

by Eq. 8. A factor, wij, is now introduced, which intends to

account for the strength of influence in Eq. 8. Conse-

quently, Eq. 8 becomes,

Wij ¼
wij

1þ exp � ðpj�piÞ
K

h i ð11Þ

In Eq. 11, wij ¼ 1 if the interacting players belong to the

same group, and, wij ¼ w if the interacting players belongs

to a different group. Here, the value of w; 0\w\1, char-

acterises the strength of reduced teaching activity when

two different groups of players are interacting.

Players having higher reproductive fitness or influence

serve a role similar to that of hubs in scale-free networks

[66]. Later, this teaching ability of players was considered

to be strategy dependent, i.e. it is different for cooperators

and defectors [74]. It was observed that these rules promote

cooperation in various types of games on T � S plane [74].

Another influential factor which affects the game dynamics
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is the ageing of players. Considering a limited interaction

time or finite life span of players is obviously more realistic

than an infinite lifespan for players. Studies have noted that

ageing might play a role in the outcome of evolutionary

games [75], but the choosiness of a player has also been

emphasised. Later it was observed that age- and memory-

dependent change in game rules could result in grouping

within populations. As this knowledge is associated with

age, it also affects the aforementioned teaching ability of

players [76].

12 Growing population and reproduction rate

The aspect of evolutionary games in growing and evolving

populations has drawn comparatively lesser attention vis-a-

vis evolutionary games in constant populations. A recent

study proposed an alternative model for the attachment of

new offspring to existing ancestors with a probability [77].

This probability is analogous to the probability of prefer-

ential attachment in scale-free networks, but is driven by

the payoff of the ancestors instead of their connectivity. At

each time step an individual, i, plays with all its neighbours

and obtains an accumulated payoff pi. N is the total number

of existing nodes, b the intensity of selection, and Pi the

probability of attachment with the ith individual.

Pi ¼
ebpi

PN
j¼1 e

bpj
ð12Þ

However, this scenario is different from the method

mentioned in Sect. 10, where individuals change

neighbours due to dynamic linking. Here, reproduction

rate also has a good influence on the maintenance of

cooperation. It has been observed that in a single round of

the game, if the number of new individuals increases, the

system goes far from steady state and cooperation is

increased. This indicates the interdependence between

network growth and evolutionary dynamics. In another

work [20], the fitness function possessed contribution from

two parts: individual fitness and global fitness. Global

fitness is related to overall population growth. On the other

hand, individual fitness is related to competition between

individuals. This approach is actually a combination of

population dynamics (where global fitness of the

population is considered) and evolutionary game theory

(where individual fitness fuels competition). In this model,

the initial fluctuation of cooperator fraction is amplified

exponentially, which leads to a transient but robust increase

in overall cooperation.

13 Influence of structure in experimental
conditions

Spatio-temporal interactions between microbial strains in

laboratory environments provide us a firm ground to test

the consequences of spatial constraints in living systems

around us. Such restrictions in the microbial world are

inherent in nature. A classic example of spatially dis-

tributed microbial communities is witnessed in biofilms

[78, 79]. In biofilms, various types of bacteria, fungi or

algae are spatially distributed to form well-structured

communities, where inter-community interaction and

communication can be observed [80]. Intra- and inter-

species interaction by quorum sensing and other commu-

nication processes result in creation of a well-maintained

and stable microbial ecosystem. These ecosystems are

robust against external fluctuations. Inside a biofilm

structure, cooperation within microbial communities can be

observed, where secondary metabolites produced by one

kind of cells help others for efficient survival [81].

Again, some strains of E. coli having col plasmid can

produce a toxin called colicin, which are potentially toxic

for a number of other strains of E. coli. Due to production

of such toxins, inter-strain interaction and population

dynamics is greatly affected [82, 83]. Interactions between

colicin-producing E. coli strains have been experimentally

studied. In petri dishes, these interactions produce spatio-

temporal patterns [84, 85]. Three kinds of strains, namely

(1) colicin-producing, C, (2) colicin-resistant, R, and (3)

colicin-sensitive, S, strains were studied. Colicin-producing

strains, C, can kill colicin-sensitive strains, S by producing

colicin which basically acts as a toxic for S. However,

C can be exploited by the colicin-resistant strains, R, due to

the higher growth rate of R. On the other hand, colicin-

resistant strains, R, can break down colicin molecules from

the surroundings upon expenditure of a certain metabolic

cost. However, it is exploited by S strains, due to a com-

paratively slower growth rate. Overall, all strains exhibit a

cyclic competition like rock-paper-scissor game, which is

represented in Fig. 4. In this game, rock crushes scissor,

Fig. 4 Cyclic competition in interacting bacterial strains is similar to

the rock-paper-scissor game

Int J Adv Eng Sci Appl Math (2019) 11(2):138–152 147

123



scissor cuts paper, and paper wraps rock. We discuss this

cyclic dominance in the next section. This cyclic domi-

nance can be observed in a petri dish containing agar media

in the laboratory. The interacting cells produce boundaries

of different domains indicating particular strains. Due to

interaction dynamics, the domains invade each others and

produce dynamic patterns.

Spatial influence is also observed in some RNA phages.

Bacteriophages are viruses which can multiply only with in

their host bacterium as they lack their own replication

machinery [86, 87]. While these phages are strongly asso-

ciated with specific hosts, occasionally two or more closely

related phages could share a specific type of host cell. When

more than one type of phage tries to grow within a single

host cell, they realise spatial restrictions within the cellular

boundary. The effects of fitness difference of two distinct

phages have been compared [88], when (a) they co-infect a

single host or (b) individually infect different hosts. Phages

that produce a good amount of phage building blocks using

the host machinery are considered as cooperators, while the

remaining phages that take far greater advantage of the host

machinery, are considered as defectors. Naturally the fitness

of defectors is much higher in host cells having more

cooperators than in host cells having more defectors. Their

fitness and payoff difference resembles the payoff matrix of

evolutionary Prisoner’s Dilemma [89].

14 Cyclic dominance

Another challenge of evolutionary game theory is to uncover

the causes of maintenance of biodiversity in nature [90].

Coexisting species in diverse habitats interact through

exchange of mass and energy resulting in crucial mutual

inter-species dependence. Indeed, the extinction of one

species may lead to extinction of another. In predator–prey

interaction, the decrease in prey frequency leads to a

decrease in predator frequency due to scarcity of food.

Again, the decrease in predator frequency initially leads to

an increase in prey frequency, but subsequently also subjects

the prey community to face nutrient limitation. Therefore, in

a two-species predator–prey model, a steady state is reached

at which both of them coexist. Inclusion of more species in

predator–prey model leads to a cyclic dominance between

species [91]. Biodiversity not only tries to describe inter-

actions between distinctly related species but also attempts

to explain interactions between closely related species

caused by mutation in their genome. These mutations can

cause new speciation in fluctuating environments [92].

Cyclic dominance between species is a key notion which

lends insight into the establishment and sustenance of bio-

diversity [90, 93]. This scenario can be modelled in the

framework of the well-known rock-paper-scissor game. The

Californian lizard Uta stansburiana is a reported example

which shows such behaviour at the time of reproduction

[94–96]. This type of behaviour has also been observed in

microbes. Some strains of E. coli exhibit this type of inter-

action which is schematically described in Fig. 4 [84, 85].

In the well-mixed regime, these systems have been

modelled extensively using the Lotka–Volterra equation

[97–99]. Although models in well-mixed regime lend

important clues regarding the behaviour of the system, it

becomes essential to model such systems incorporating

structural restrictions. The experiments discussed in the

previous section show that spatial limitations are an

essential condition and cannot be ignored, if we aim to get a

realistic view of the system. Furthermore, the mean

extinction time of species is proportional to the logarithm of

the population size in well-mixed regime. But when struc-

ture is incorporated, the mean extinction time becomes

exponentially proportional to the population size. This, thus

implies a long coexistence time for the interacting species

[100]. Inclusion of stochasticity between individuals in

terms of mobility, asynchronicity in death–birth process and

external environmental fluctuations leads the system further

from a deterministic extinction point while being attended

by an increase in the mean extinction time.

Interested readers can find an exhaustive account of

cyclic dominance in evolutionary games in Ref. [101].

15 Games on multilayer networks

Now let us move beyond ‘‘simple’’ networks to ‘‘network

of networks’’, which are often used interchangeably with

‘‘multilayer networks’’. Three broad categories of such

Fig. 5 Representation of a multiplex network. Of late, games are

being widely studied on such networks
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networks are mathematically defined below, namely

(a) multiplex networks, an example of which is depicted in

Fig. 5, (b) interconnected networks and (c) interdependent

networks. Such networks consist of L networks or layers,

where L� 2 networks (or layers). Networks are usually

denoted as G ¼ ðV ;EÞ, where V is the set of nodes and

E � V 	 V , is the set of edges which connects the set of

nodes, V. Generalising our notation to L number of inter-

connected networks (or layers), we can write

GL ¼ ðVL;ELÞ. For weighted graphs, this can be further

generalised to GL ¼ ðVL;EL;WLÞ, where WL obviously

denotes the set of edge weights. Further, directionality

might also become relevant, depending on the problem in

question. Let Nc be the number of nodes in network layer,

c. The combination of nodes of all network layers provides

the set of VL ¼ [L
c¼1Vc, where Vc ¼ fV1

c; :::;VN
cg Here, it

should be emphasised that the number of nodes Nc may not

be identical and vary from layer to layer. Indeed, a node in

layer, c, might have multiple, one or even no partner in

layer d, where obviously, c; d 2 f1; 2; :::; Lg and c 6¼ d. The
set of connections, EL, mentioned above, can be written

further as EL ¼ fEc [ Ecdg. Here, Ec � Vc 	 Vc and Ed �
Vd 	 Vd denote the set of intra-layer connections in the

network layer c and d, respectively. Ecd � Vc 	 Vd is the

set of inter-layer connections. In the intra-layer adjacency

matrix of a graph, Ac, an existent edge between the ith node

and jth node in network layer c can be denoted as

a
c
ij ¼ 1; i; j 2 ð1; :::;NcÞ; i 6¼ j. The absence of the edge

naturally means a
c
ij ¼ 0. For the adjacency matrix of inter-

layer connections, Acd, an existent connection from the ith

node in layer c to the jth node in layer d can be denoted as

a
cd
ij ¼ 1; i 2 ð1; :::;NcÞ; j 2 ð1; :::;NdÞ. Similarly, the

absence of this inter-layer connection would mean a
cd
ij ¼ 0.

We can now distinguish between the different subclasses of

‘‘multilayer networks’’ or ‘‘network of networks’’:

• In multiplex networks, each network (layer) has a

fraction of overlapping nodes or even the same set of

nodes but the links among them are different. Thus,

Vc \ Vd ¼ VL ¼ V; 8c 6¼ d.
• In interconnected networks, nodes in different networks

(layers) are physically connected and every network

generally has different types of nodes. Thus,

Vc \ Vd ¼ ;; 8c 6¼ d.
• In interdependent networks, every network (layer)

generally possesses different types of nodes, and there

exist links of dependence but not actual physical

connections between nodes in different layers. Thus,

Vc \ Vd ¼ ;; 8c 6¼ d.

Some studies on the problem of Prisoners Dilemma in

multilayer networks have been conducted recently. How-

ever, there are lots of open problems regarding various

aspects of rock-paper-scissors game, ultimatum game,

collective-risk social dilemma game, naming game etc.,

which are yet to be explored in this area. An extensive

review on evolutionary games on multilayer networks is

available in Ref. [102].

16 Discussion

Network science has witnessed a significant surge of

activity in the last two decades. This has propelled research

on trying to realistically explain the emergence and sus-

tenance of cooperation by studying evolutionary games on

irregular structures. Mathematical simplifications such as

denoting well-mixed populations by complete graphs

might lead to elegant closed form solutions. However, in

reality an individual may not be interacting with all its

neighbours simultaneously, even at any given instant. The

present report tries to present an account of such possible

interactions which have been studied in literature.

A central assumption in evolutionary games is that every

individual in a genetically homogeneous population is

considered to be genetically predetermined to play a single

strategy, which is encoded in the organism’s genome. One

can also encounter genetically heterogeneous populations

containing different mutant strains of the same species.

Such situations might be handled better by using mixed

strategy dynamics, which are just beginning to be explored

[28–30]. It may be especially noted that incorporation of

rationality in a player’s decision-making ability alters the

game outcome significantly [32].

Furthermore, we need to mention here that the intel-

lectual decision-making capacity of players has a signifi-

cant influence on the game outcome. Here in this review,

we are only considering irrational individuals guided by

their genetic makeup. If we focus on cooperation between

humans in society, rationality plays an important role [32].

In such cases, imposition of spatial restriction opposes the

emergence of cooperation even in Prisoner’s Dilemma

[103, 104]. Moreover, the conditional cooperation of

rational individuals plays a critical role in the game out-

come, where a player wants to cooperate—only when

others are cooperating in its neighbourhood [105].

In evolutionary games, cooperation is thought to be

enhanced in heterogeneous structures [18], but only under

certain conditions [22]. Such theoretical approaches based

on game dynamics under structural limitations to describe

evolutionary process are somewhat successful in explaining

the emergence of cooperative behaviour. In mixed popula-

tions, cooperators are usually exploited by defectors. How-

ever, some studies show that environmental fluctuations [21]

and limited resources [106] can promote cooperation. Thus,

quite some ground remains yet to be covered.
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Attempts have also been made to describe the conflict

between gradualistic evolution and punctuated equilibrium

[107] on speciation in terms of evolutionary game

dynamics where fixation of a specific mutant in a popula-

tion has been modelled satisfactorily.

Evolutionary games have traditionally been used to

study evolution. However, there are now gradually being

used in other contexts, especially in computer science. For

example, evolutionary game dynamics with migration has

been explored for hybrid power control in wireless com-

munications [108]. Other connections between algorithms,

games and evolution are also being explored [109]. This

review aims to deliver a pedestrian account of evolutionary

games on heterogenous structures. More detailed and for-

mal discussions regarding such games can be found in

exhaustive accounts like Ref. [110].
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