Ultra high energy cosmic rays and the Pierre Auger Observatory

lohannes Knapp, D

charged particles from astrophysical sources ... the highest energy particles in the universe !

Cosmic Rays: p, He, Fe fully ionised nuclei electrons identified at low energies Energies: MeV ≥ 10²⁰ eV (UHE: > 10¹⁸ eV) 1962 Volcano Ranch 1995 Fly's Eye


```
Flux of Cosmic Rays
```

12 orders of magnitude in energy, 33 " in flux ! 10x up in energy, \approx 500x down in flux Highest energy events: \approx 3 x 10²⁰ eV

1020 ev particles do exist!

"What is the origin of the Ultra High Energy Cosmic Rays ?" (UHECRS: > 1018 eV)

Measure them with unprecedented statistics and quality.

Where do UHECRS come from? What are they? How are they accelerated? Does their spectrum end?

Extensive Air Shower:

índírect measurement, shape and partícle content of showers

Auger: Hybrid Detector

measure extensive air shower with:

24 Fluorescence telescopes 30° × 30° FoV, 10% duty cycle, good energy resolution

array of 1600 water Cherenkov detectors on 3000 km², 100% duty cycle, well-known aperture

unknown at hígh energíes :

• CR composition (p, He, O, ... Fe, γ , V)

energy spectrum

get composition from magnetic deflections, features in spectrum, well-understood acceleration and environments to constrain hadronic interactions.

A difficult problem...

details of nuclear and hadronic interactions Construct an air shower model based on particle physics data (LHC ...) and reliable theories. Extrapolate to the UHECR regime (>10¹⁸ eV, very forward) to interpret CR composition.

Find consistent description of Astrophysics and Hadronic physics simultaneously.

The CORSIKA program

http://www-ik.fzk.de/corsika

Fully 4-dim MC simulation Hadroníc (p-N, π -N, ... A-N) and electromagnetic interactions. cross-sections, particle production (at $\approx 0^{\circ}$), soft int., decays, ... Models based on collider data (< Tev) and a theory (GRT) with some predictive power for extrapolation to 10²⁰ eV

Energies: $10^6 \dots 10^{20} \text{ eV}$

rea	sonable agreement: (~ 3	30% level for $<10^{18}$ eV)
e.g.	HESS, VERITAS, Magíc y ray astron.	$.; 10^{11} - 10^{14} eV$
	KASCADE-Grande CR showers;	$10^{14} - 10^{17} eV$
	Haverah Park	10 ¹⁷ -10 ¹⁸ eV
	Auger	10 ¹⁸ -10 ²⁰ eV

UHE Hadronic models are the major source of uncertainty.

Auger layout

HEAT hígh elev. FD tels.

> ínfill array

data taking: since 2004 completion: Nov 2008

Surface array

(Water Cherenkov detectors)

>1600 tanks deployed over 3000 km² triangular grid, 1.5 km distance, 3 PMTs, read out at 40 MHz solar powered, ≈ 10 W

High & smooth pulses close to shower core, low & spiky pulses far away.

CR arrival direction = air shower direction from arrival times at each tank

or from cross-calibration with FD.

some of the highest-energy SD events: near vertical inclined

 $E = 1.67 \times 10^{20} eV$ $\theta = 14^{\circ}$ $E = 0.37 \times 10^{20} eV$ $\theta = 74^{\circ}$

FD telescope:

11 m² mírror (Alumíníum)

440 PMT camera

24 telescopes at 4 sítes 30°x30° FOV, each aperture with shutter, filter and Schmidt corrector lenses

longitudinal profile, calorímetric energy, Xmax for mass comp.

0

-30

-20

-10

N

	hybrid	SD only	FD only
angular resolution	0.2 °	I-2°	3-5 °
aperture	independent of E, mass, models	independent of E, mass, models	dependent of E, mass, models and spectral slope
energy	independent of mass, models	dependent of mass, models	independent of mass, models

Shower seen by the array and all 4 FDs $E \approx 7 \times 10^{19} \text{ eV}$ a "Platinum Hybrid"

LK Cut-C

Greisen Zatsepin Kuzmin

Universe becomes opaque for $E > \text{few} \times 10^{19} \text{ eV}$. beyond this: Sources must be close ! If sources are universal: cut-off in CR spectrum. Test of Lorentz Invariance for $\gamma \approx 10^{11}$!

 $Flux = \frac{N_{evts}(>E)}{t \cdot A \cdot \Omega}$

E: straight forward from FD (but FD only active for 10% of time) model dependent from SD (SD active for 100% of time)

get energy calibration from FD for high statistics from SD

A: directly from size of SD (above 3x1018 eV)

Auger finds "ankle" and a clear (>20 σ) spectral steepening at $E \approx 3 \times 10^{19} \text{ eV}$.

Does Auger see the GZK cut-off?

GZK cut-off: if CRS are protons power-law spectrum at source > 10²⁰ eV sources are universally distributed then depression of flux at ≈ few x 10¹⁹ eV But also nuclear primaries would be absorbed, and could produce a similar cut-off.

Alternatives:

maximum energy of accelerator ? effect of a local source ?

Is ankle the transition point between galactic and extragalactic CRs ?

... need more info on composition ...

Interpretation?

Anísotropy - Sources (?)

Highest Energy Particles are not deflected much! i.e. CR should start pointing back at sources.

84 Highest Energy Events >55 Eev (2011) (28 correlating)

update of the correlation of the highest energy cosmic rays with nearby galaxies (V-C catalog).

parameters fixed a príorí: $E_{min} > 55 EeV$, $\psi < 3.1^{\circ}$, $d_{max} = 75 Mpc$

current signal: $p = 0.33 \pm 0.05$

chance probability for isotropic distribution to give this result: **0.006**

Swift-BAT

58-months catalog, (uníform, hard X-rays 261 Seyfert galaxíes)

d < 200 Mpc weighted with X-ray flux, rel. exposure, GZK effect 5° smoothing

UHE Cosmíc rays are
not ísotropíc
of extra-galactic origín.

UHECRS come from "nearby extragalactic matter"

This result is suggestive of primary protons and a GZK cut-off:

deflection in gal. mag. fields @ 60 Eev: small for protons big for Iron

correlation only with nearby AGNs

Options: (stable particles)

photons?

shower shape is different from expectation for photons (electromagnetic interaction is well known; QED)

neutrinos?

showers do start near top of atmosphere

neutrons?

from nearby galactic neighbourhood

 \mathbf{X}_{up}

FD events (hybrid), E>10¹⁹ ev

compare each event with photon simulations, combine probabilities for all events

Photon límíts

improved limits at lower energies, approaching the region where GZK γ are expected.

Options: (stable particles)

nucleí:

Showers look like showers from p and nuclei at lower energies, just much larger. n, p ... He ... O ... Fe difficult! the only nucleí to survive need shower model

long travel to earth

for interpretation

Galactic Neutrons

(/ km² yr) no excess, nothing from gal. disc or gal. plane

Name 1FGL	$l \; [deg]$	b [deg]	distance [kpc]	Name HESS	l [deg]	b [deg]	distance [kpc]
J0835.3-4510	263.55	-2.79	0.29 ± 0.02	J0852-463	266.28	-1.24	0.2
J1709.7-4429	343.10	-2.69	1.4 - 3.6	J0835-455	263.85	-3.09	0.29
J1856.1 + 0122	34.70	-0.42	2.8	J1713-397	347.28	-0.38	1
J1809.8-2332	7.39	-1.99	1.7 ± 1.0	J1616-508	332.39	-0.14	6.5
J1801.3-2322c	6.57	-0.21	1.9	J1825-137	17.82	-0.74	3.9
J1420.1-6048	313.54	0.23	5.6 ± 1.7	J1708-443	343.04	-2.38	2.3
J1018.6-5856	284.32	-1.70	2.2	J1514-591	320.33	-1.19	5.2
J1028.4-5819	285.06	-0.49	2.3 ± 0.7	J1809-193	10.92	0.08	3.7
J1057.9-5226	285.98	6.65	0.7 ± 0.2	J1442-624	315.41	-2.30	2.5
J1418.7-6057	313.33	0.14	2-5	J1640-465	338.32	-0.02	8.6

Fermi LAT

H.E.S.S.

bright γ Set of sources S_{stacked} Energy bin [EeV] sources, Fermi LAT [1-2]2.07d < 9 kpc[2-3]Fermi LAT 0.51(≈λn @Eev) Fermi LAT ≥ 1 2.35[1-2]H.E.S.S. -0.75H.E.S.S. [2-3]-0.40H.E.S.S. -0.89 ≥ 1

Nuclear Composition

Xmax: height of shower maximum Xmax and RMS(Xmax) are mass sensitive

FD:

If one trusts the models, then composition turns heavier (but the two plots are not consistent)

Composition data: transition to heavier primaries

(Auger, JCAP 02 (2013) 026)

Composition mis-match?

Spectrum: Anísotropy: GZK cut-off? correlation with nearby matter

Composition:

(E > 6x10¹⁹ eV) míxed/heavy? (E < 4x10¹⁹ eV) f strongly model dependent

p dominated ?

Need hadronic interaction models to be modified ? We start to do particle physics at $> 10^{18}$ eV.

What if CR are protons and physics changes?

 $\sigma(p-air) = 505 \pm 22 \pm 30 \text{ mb}$ (@2 EeV)

models underestimate N_{μ} by 25-100% for Fe for p

em and muonic signal depend only on E and shower development (DG)

measure $S_{1000}(\theta)$, compare with simulations Result: muon deficit ($\approx 53\%$) in simulations i.e. 26% higher energy estimate than FD

Other methods:

jump method: smoothing method: count muon peaks in time traces separate e, γ and μ signal

golden hybrid analysis:

compare SD with FD reconstruction

Consistent findings:

Air shower models require modifications:

Muons need $\approx 1.3 - 2x$ more, ground signal need $\approx 1.5 - 2x$ more

@ 10¹⁹ eV

for the same longitudinal profile. hadronic model ? fluorescence yield ?

LHC results on cross-sections and particle production (in very forward range) will provide helpful constraints.

EPOS: a new model, with enhanced baryon production makes about 50% more muons.....

LHCf: π^{o} production at o^{o}

models to be modified ...

ín all models muon number ís 30-60% too small

- Much more data from LHC / RHIC expected.
- Model to be revised for a better extrapolation to UHE
- further analysis of Auger data
- extension of Auger for more info per event
- for a better overall description of CR composition and hadronic interactions.

Why upgrade?

Extend composition measurements towards higher energies:

- → search for rígídíty-dependent suppressíon of flux
- → verify existence of ~10% p-component at E>55 EeV
- → do proton astronomy & identify sources

Improve sensitivity to Eev photons:

photons from GZK-effect ("smoking gun")

→ prove/disprove p-dominated composition at highest E that may possibly be masked by rapid change of had-interactions

Study features of hadronic interactions above $E_{cm} = 70 \text{ TeV}$

Composition measurement at energies where the cutoff is observed

measure μ comp. with SD (100% duty cycle)

segmented tank (LSD)

Scintillator on top (ASCII)

segmented tank (LSD)

Scintillator on top (ASCII)

segmented tank (LSD)

RPCs below (Marta)

Scintillators in ground (AMIGA-Grande, TOSCA)

Scintillator on top (ASCII)

segmented tank (LSD)

RPCs below (Marta)

Scintillators on top of tank

RPCs below tanks

Scintillators underground 1

Scintillators underground 2

AMIGA like scintillator bar

expected N_{μ} -resolution

Planned Cost Target: US\$ 10-12M (≈ € 8-10M) (≈ 20 % of initial investment)

Time Line:

	2013		2014			2015			2016				20	17		2018								
Science Proposal subm																								
Review of Science Proposal																								
Prototyping in field			Х	X	X	X																		
Selection of Prototype																								\square
Submission of TDR							•																	\square
Final Evaluation						Г	X	X																
Seeking funds / construction								•	X	X	X	X	X	X	X	X	X	X						\square
take data												Х	X	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	→
upgrade finished																								

data taking into 2023 will double the statistics of all data up to 2015

Exotics:

Auger Scaler Rates: read out for monitoring

Auger Scaler Rates: read out for monitoring

φ [deg]

30

25

20

angle [deg]

pixel elevation

[deg]

Auger is taking high-quality data at > 10^{17} eV.

Spectrum: ankle and steepening seen at $\approx 5 \times 10^{18}$ and $\approx 4 \times 10^{19}$ eV with model-independent measurement and analysis Interpretation requires knowledge of composition.

Arrival directions:

CR are extragalactic some correlation with nearby matter for E > 55 EeV, Mass composition: upper limits on photons, neutrinos, and neutrons reduced fluctuations at ≈ 2 x 10¹⁹ eV mixed / heavy composition? with current models, but ...

Particle Physics (at >10¹⁸ eV):

p-air, p-p cross section @ 2x1018 eV

Hadronic interaction models in CORSIKA need adaption ... More muons & ground signal needed for same fluorescence light Auger results and new collider data constrain shower models

What next?

- Auger (as is) will provide a few more years of reliable experimental data
 § a solid basis for future work.
 Operation at least until 2015 (then total exposure: 7 Auger yrs)
- Good test environment for alternative techniques (MHz, GHz Radio detection of EAS, atmospheric physics, ...)
- Prolongation and Upgrade (?) for better composition measurements
 2015 2025
- 3000 km² turns out to be still too small for the energies ~10²⁰ eV
 "Auger next"? > 30000 km² ??? new, cheaper techniques needed.
 Ideas? Radio detection of air showers not quite ready yet.
- CRS, V from space: >3 × 10⁶ km² sr, launch in 2014? Jem-EUSO on ISS, 400 km alt., >10⁵ km²
 CROS satellite, 400-800 km alt. ≈10⁶ km²
The End