

Outline

- Why Neutrino Telescopes?
- IceCube Detector
- IceCube Results:
 - Detector performance: atm. v, atm. μ
 - Astrophysical v: point source, diffuse searches
 - Cosmic ray anisotropy
 - Dark Matter, magnetic monopole searches

DeepCore, PINGU, & MICA

High Energy Particles from Cosmos

Astronomical messengers:

- cosmic rays (proton > ~80%)
- photon
- neutrinos (so far: Sun, SN1987A)

$$\begin{array}{l} p+\gamma \twoheadrightarrow \Delta^{+} \twoheadrightarrow (n) \ \pi^{+} \twoheadrightarrow (e) \ \underline{v}_{e} \ \nu_{\mu} \nu_{\mu} \\ p+p \ \twoheadrightarrow \pi^{-} / \pi^{+} \ \twoheadrightarrow (e \) \ \underline{v}_{e} \ \nu_{\mu} \nu_{\mu} \end{array}$$

Credit: NASA

High Energy Neutrinos from Cosmos

We'd like to answer:

- 1. What are the cosmic accelerators? GRB, AGN, SN remnants, etc..
- 2. What is the physics there?

Why Neutrino Telescope?

Pros and Cons:

- Protons get deflected below 10 EeV.
- Protons are strongly attenuated above 50 EeV (GZK cut-off).
- Photons are absorbed (or pair-production) above 50 TeV.
- Neutrinos cover all energy range, point back, but hard to detect.
 ---> thus, we need a big detector.

Neutrino Telescopes

Requirements:

- large detection volume to compensate small v x-section
- optically transparent medium

Experiments:

- in water: Baikal, ANTARES, NESTOR, NEMO, KM3NeT
- in ice: AMANDA, IceCube (successor of AMANDA)

Medium	Water	lce	
Location	Northern	Southern	
Access	year-round	Austral summer	
Noise rate	~40 kHz	~0.5 kHz	
Scattering length	> 100 m @466 nm	~20 m @400 nm	
Absorption length	~60 m @466 nm	~110 m @400 nm	

Antarctic ice is the most transparent & clean ice in the world.

The IceCube Collaboration

University of Alberta

Clark Atlanta University Georgia Institute of Technology Lawrence Berkeley National Laboratory **Ohio State University** Pennsylvania State University Southern University and A&M College Stony Brook University University of Alabama University of Alaska Anchorage University of California-Berkeley University of California-Irvine University of Delaware University of Kansas University of Maryland University of Wisconsin-Madison University of Wisconsin-River Falls

Stockholm University **Uppsala Universitet**

University of Oxford

Ecole Polytechnique Fédérale de Lausanne University of Geneva

> Université Libre Université de Mons University of Gent Vrije Universiteit Brussel

University of the West Indies

Deutsches Elektronen-Synchrotron Humboldt Universität Max-Planck-Institut für Kernphysik-Heidelberg **Ruhr-Universität Bochum RWTH Aachen University** Universität Bonn Universität Dortmund Universität Mainz Universität Wuppertal

Chiba University

University of Adelaid

University of Canterbury

11 countries, 39 institutions, ~250 members

InternationI Funding Agencies

Fonds de la Recherche Scientifique (FRS-FNRS) Fonds Wetenschappelijk Onderzoek-Vlaanderen (FWO-Vlaanderen) Federal Ministry of Education & Research (BMBF)

German Research Foundation (DFG) Deutsches Elektronen-Synchrotron (DESY) Knut and Alice Wallenberg Foundation Swedish Polar Research Secretariat

The Swedish Research Council (VR) University of Wisconsin Alumni Research Foundation (WARF) US National Science Foundation (NSF)

Let's Go to the South Pole!

IceCube Lab (ICL)

-100F (-73C) outside +200F (+93C) sauna

http://theglobalguy.com/world-travels/antarctica/the-300-club

The IceCube Detector

String Deployment

Drilling to 2500 m < 40h String deployment ~ 12h

eretor aton ot-water of

speed: ~90m/hr

Digital Optical Module (DOM)

Hamamatsu R7081-02 (10", 10-stage, 10⁷ gain)

Power consumption: 3W Dead time: < 1% Dark noise rate: < 400 Hz Local coincidence rate: ~15 Hz

Neutrino Detection

Detect 3 flavors: ν_e , ν_μ , ν_τ

Method: detect Cherenkov light from secondary particles produced by neutrino interaction

Event Views

IC59: More than 13σ deficiency (14 moon cycles) systematic pointing error < 0.1°, *Boersma*, ICRC2011

IC59: More than 13o deficiency (14 moon cycles) systematic pointing error < 0.1°, *Boersma*, ICRC2011

Atmospheric Neutrinos

Background for astrophysical neutrinos!

(E spectrum: softer in high energy region)

Conventional v: $p + p \rightarrow \pi^{-} / \pi^{+} \rightarrow \mu \nu_{\mu} \rightarrow (e) \nu_{e} \nu_{\mu} \nu_{\mu}$ $\nu_{e} : \nu_{\mu} : \nu_{\tau} = 1 : 2 : 0$

Prompt v:

Prompt decay of charmed hadrons

$$\begin{array}{rcl} D^+ & \to & \overline{K^0} + l^+ + \nu_l \\ D^0 & \to & K^- + l^+ + \nu_l \\ \Lambda_c & \to & \Lambda_0 + l^+ + \nu_l. \end{array}$$

Atmospheric Neutrino Flux

Atmospheric Neutrino Flux

IceCube: Performance

IceCube: Data Rates

Year	#. Strings	Run length	µ rate (kHz)	v rate
2005/06	IC1			total 2
2006/07	IC9	137 d	0.08	1.7 / d
2007/08	IC22	275 d	0.6	28 / d
2008/09	IC40	375.5 d	1.1	37.6 / d
2009/10	IC59	348 d	1.9	124.5 / d
2010/11	IC79	~365 d	2.3	~170+500 / d
2011/-	IC86	since May	2.7	~190+500 / d

Data Transfer

DeepCore

- Satellite: ~90 GB/day, (pre-scaled) filtered data
- Ship: for all filtered data, once a year to northern hemisphere
IceCube: Physics Menu

• Astronomy/Astrophysics:

- -- Point source search: GRB, AGN, SNR, SN, etc...
- -- Diffuse search: all sky search
- Cosmic ray physics:

-- compositions, energy spectrum

- Particle physics:
 - -- neutrino oscillation: atmospheric
 - -- charm production process at high energy
 - -- etc.

• New physics:

- -- Exotic Particle Search: WIMPs, magnetic monopoles
- -- Violation of Lorenz invariance
- -- sterile neutrinos ?

Sorry,... I can not cover all these topics here.

Point Source Search: IC40 + IC59

• Livetime: 375 d (IC40) + 348 d (IC59)

 Total events: 43K (up-going) + 63K (down-going), 37K (IC40) + 70K (IC59)

Point Source Sky Map: IC40 + IC59

Point Source: E⁻² Median Sensitivities, Upper Limits (90%CL)

GRB: IC40, IC59 Results

Model dependent search

Diffuse Astrophysical v_{μ} Search

Diffuse Astrophysical v_{all} Search

EHE Neutrino Flux

W&B with cosmological evolution: 24.5 events in IC86 3 yrs (4.5 in IC40)

GZK Max fit (M. Ahlers, et al., 2010): 4.8 events in IC86 3 yrs (w Fermi-LAT constrain)

IC86 (5yr) will be sensitive to guaranteed neutrino flux from GZK.

Cosmic Ray Anisotropy

* Cause of anisotropy is not known. Some speculations are:

- -- Isolated nearby and recent SNR
- -- Configuration of magnetic field in or near solar system

* Further studies of anisotropy are on-going.

Cosmic Ray Anisotropy: Energy dependency

* This weird energy dependency has not been understood at all!

IC59 Data (2009-10)

Indirect Dark Matter Search: Method

The Sun rises/sinks maximally 23° above/below the horizon at the south pole.

Indirect DM: Galactic Center/Halo

Look for excess of events in on-source region w.r.t. off-source region.

Indirect DM: Galactic Center/Halo

Look for excess of events in on-source region w.r.t. off-source region.

arXiv: 1101.3349

IC22 (Halo analysis: 275 days)

obs. on-source: 1367 events obs. off-source: 1389 events (atm. nu dominant)

IC40 (GC analysis: 367 days)

obs. on-source: 798842 events obs. off-source: 798819 events (atm. mu dominant)

Indirect DM: Galactic Center/Halo

Look for excess of events in on-source region w.r.t. off-source region.

arXiv: 1101.3349 IC22 (Halo analysis: 275 days) obs. on-source: 1367 events

obs. off-source: 1389 events (atm. nu dominant)

IC40 (GC analysis: 367 days)

obs. on-source: 798842 events obs. off-source: 798819 events (atm. mu dominant)

Magnetic Monopoles

- Hypothetical particle: Dirac postulated it in 1931 (symmetry in E&M).
 - -- If MP exists \Rightarrow then electric charge is quantized.
 - -- Charge: $g_D = (n/2)^*(e/\alpha)$, where n = 1, 2, 3, ...
- GUT monopoles (non-relativistic MPs):
 - -- 10¹⁶ 10¹⁷ GeV GeV
 - -- produced during phase transition of early universe.
- (Sub-)Relativistic monopoles:
 - -- 10⁵ 10¹⁵ GeV
 - -- produced in later stage of the phase transition
- $MP + p \rightarrow MP + e^+ + \pi^0(2\gamma) \rightarrow em shower$
 - → Monopole catalysis of nucleon decay: σ ~ 10⁻⁵⁶cm² (negligible) however, enhancement by RubaKov-Callan mechanism where σ ~ becomes strong interaction level

Relativistic monopole will leave very bright track: ~8300 x μ

Monopole simulation (IC22)

Relativistic monopole will leave very bright track: ~8300 x μ

Relativistic monopole will leave very bright track: ~8300 x μ

Relativistic monopole will leave very bright track: ~8300 x μ

Towards Lower Energy Physics!

- **DeepCore:** already deployed & taking data
- <u>PINGU:</u> possible shorter term future project Precision IceCube Next Generation Upgrade
- MICA: possible longer term future project Multi-megaton Ice Cherenkov Array

Neutrino Detectors & Energy Coverage

DeepCore

• <u>Spec:</u>

- ~30 Mton ice
- Energy: ~10 GeV threshold
- atm. v: O(200 k) / year
- 4π detector:
 - -- veto surrounding DeepCore,
 - -- explore southern sky, GC

• <u>Geometry:</u>

- 8 (special) + 12 (IceCube) strings
- 72 m horizontal spacing (42 m spacing for 6 strings)
- 7 m vertical spacing

• <u>PMTs:</u>

- ~40% higher Q.E. PMTs
- ~5x higher effective photocathode density (but 0.1% coverage)

Below ~100 GeV, DeepCore improves V_{eff} significantly!

DeepCore: Cascade Search

• Search for atmospheric vinduced cascade events: $v_e CC + v_x NC$

• Final sample:

- -- 1029 events
- -- 59% cascade + 41% ν_{μ} CC
- -- ~5x enrichment of cascade signal w/o reconstruction
- -- $\sim 10^8$ x reduction of atm. muon background (Signal/Noise = 100/1)

DeepCore: Cascade Candidate Events

Two candidate events

** Standard hit cleaning algorithm removed all noise hits in rest of detector.

DeepCore: v Oscillation

 $P(v_{\alpha} \rightarrow v_{\alpha}) = 1 - \sin^2(2\theta) \sin^2(1.27^*\Delta m^2(eV^2)^*L(km)/E(GeV))$

- Loosen cuts to see possible $\nu_{\mu} \rightarrow \nu_{\tau}$ oscillation.
- Lots of statistics: > 10x more data in hand,

need a good control of systematics

• Similar to Super-K measurement

PINGU: Concept

Goals:

- Energy: ~ few GeV threshold
- Reconstruction: Cherenkov ring imaging (as R&D)
- Calibration: down to 1 GeV light level (include low-E calibration device)

Geometry:

 ~20 additional strings: (DeepCore + R&D) strings

Collaboration:

- IceCube + UM-Duluth + U.Erlangen + NIKHEF + U.Wuerzburg + TUM
- Conference calls, wiki, listserv
- 2nd workshop in Jan. 2012 at Penn State Univ.

PINGU: Physics

- Neutrino oscillation: + pin down $(\Delta m_{23})^2$
 - + neutrino hierarchy:
 - exploit asymmetry in nu/anti-nu σ 's
 - largest effect at $E(v) \le 5GeV$, $r = R_{Earth}$
 - need large θ_{13}
 - need good control of systematics
- Probe lower mass WIMPs
- Extensive calibration program
- Pathfinder technological R&D for MICA
- We need/expect to gain sensitivity to E(v) < ~5GeV</p>

PINGU: Detector R&D

Composite Digital Optical Module

- Based on a KM3NeT proposed design (NIKHEF)
- Glass sphere (X cm diameter) contains
 - -- total 31 of 3-inch-PMT:
 - 4x more effective photocathode area compared to that of 8-inch-PMT
 - better granularity
 - hopefully lower cost/area
 - -- electronics

Pro: single connector simplifies deployment

PINGU: Detector R&D

Compact Digital Optical Module

- Design/technology study underway (NIKHEF, Erlangen)
- Cylinder-type pressure vessel contains
 - -- total 64 of 3-inch-PMT:
 - > 5x more effective photocathode area compared to that of 10-inch-PMT
 - similar diameter to IceCube DOM
 → easy deployment
 - -- electronics

Pro: single connector simplifies deployment

Multi-Mton (MeV-GeV) detector in the Ice

Physics goals:

- -- Super Nova neutrino bursts with $> \sim 10$ MeV neutrinos
- -- Proton decay: $p \rightarrow \pi^o e^+$; $p \rightarrow K^+ \overline{v}$;

Requirements:

- -- adequate % photocathode area for attainable Cherenkov ring image
- -- possible reconstruction of Cherenkov ring

<u>Geometry:</u> not finalized yet!

- -- 100 m diameter nested cylinders or triangular grid (3 MTon ice)
- -- O(m) vertical and O(5 m) horizontal spacing
- -- need optimization with PMTs

MICA: Toy Geometry

O(200) strings

Side view

MICA: Super Nova V

- A 5 M-Ton detector could see ~10Mpc.
- SN of 10-20 MeV produces 2k-4k Cherenkov photons
 - -- need few % photocathode coverage
 - -- a burst of >=3 neutrinos in 1-10s would be above atm. v background
- Other benefits:
 - -- early trigger for optical det.
 - -- for gravitational detector: 10⁶x BG reduction, 10³x signal enhancement
- Caution: lots of uncertainties (reconstruction, particle ID, etc.)

MICA: Proton Decay

Challenging! (but competitive to other proposed projects of this scale)

SG: atm. ν, muon spallation products

- -- good energy (momentum) resolution
- -- particle ID by Cherenkov ring reconstruction
 - -- high photocathode area

Simulation study is underway

Summary & Outlook

 ✓ IceCube is the world's largest neutrino telescope at the S. Pole. (It has finished its 7 year construction in 2010.)

✓ IceCube has been producing very interesting results.:

- -- probes below WB flux/bound: GRB/diffuse neutrinos with IC40
- -- dark matter: probe SUSY models (8 yr. AMANDA+IceCube)
- -- cosmic-ray anisotropy & its mysterious E dependence

-- etc...

- ✓ IceCube has strengthened low its energy capabilities with DeepCore.
 -- First atm. cascade observation was made with IC79.
 - -- neutrino oscillation/hierarchy, lower mass WIMPs are under study.
- ✓ Possible future projects, PINGU and MICA in the DeepCore region will even further lower down the energy threshold.