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@ Cosmic ray spectrum observed at the Earth
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Figure 1. These are clearly accelerated particles
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@ Motivation
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* Particle acceleration is pretty ubiquitous in Astrophysics

* e.g., boundary of Earth’s magnetosphere, Solar coronal
mass ejections, Solar flares, pulsar magnetospheres,
supernovae, supernova remnants, active galactic nuclei,
extended radio sources

* Not to mention cosmic rays observed at the Earth!

* Accelerated particles are either detected by particle
detectors (e.g., cosmic rays)

* or detected indirectly via the emission they produce
(nonthermal radiation)
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\\g Solar flare
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Figure 2: These too involve particle acceleration
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We] Outline
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* Particle acceleration: what does it mean? (how is it different
from heating?)

* Modeling particle acceleration: the Liouville/Viasov
formalism, the Fokker-Planck formalism, Fermi acceleration
mechanisms

* Observational signatures of accelerated particles; how can
you make out If the particle distribution is a thermal or a
nonthermal one?
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We] Thermal (i.e., Maxwellian) particle distribution
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Let’s first remind ourselves of the familiar thermal particle
distribution:

3/2 2
F(w) = n (Q;ZT) - (— 7;;‘;) n= [ dusw

A thermal particle distribution emits blackbody radiation that is
defined by the temperature T'.
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We] Nonthermal (accelerated) particle distribution
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We¢] Where does the Maxwellian distribution come from? |
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Consider first the collisionless Boltzmann equation

Df L :
Di =f4+xVf+uV,f=0
The distribution function f represents the probability of finding a

given particle in a given element of position-velocity phase
space d°z d>u. The total number of particles is

n = /dexd?’u

f — the creation/destruction of particles, x — the time evolution
of the space-coordinate and u — the time evolution of the
velocity-coordinate. The collisionless Boltzmann eq simply says
that the number of particles in an elemental volume of phase

space d°z du (even as its deformed with time) is conserved.
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We] Where does the Maxwellian distribution come from? I
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* Any initial distribution will eventually relax to a Maxwellian
when RHS of Boltzmann eq = 0. Viewed another way, the
LHS has to be zero for a gas in equilibrium — Maxwellian

* Even if the RHS were not 0O; I.e., if there were collisions that
take particles in and out of an elemental phase space
volume,

° for a given number, momentum and energy, the

Maxwellian distribution occupies the maximum phase
space volume

° Generalized entropy argument: H = [ fInfd*u always |
with time, and the minimum is achieved by the
Maxwellian

* So any distribution eventually relaxes to a Maxwellian.
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@ Collisions
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* RHS of Boltzmann eq need not be zero; there can be
collisions which move particles in and out of d°z du. The
RHS (the collision operator) is an integral over velocities
which involves the distribution function

* When the collisions are Coulomb in nature, a Maxwellian f
makes the RHS =0

* Coulomb collisions — heating ; T 7 leads to T in width
(variance) of Maxwellian

* With non-Coulomb collisions, non-Maxwellian distributions
eventually relax to a Maxwellian, provided there’s enough
time. Else, the distribution could be
non-thermal/accelerated.
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W¢] Nonthermal particle distributions
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We] The “collisional” Boltzmann equation
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Df _af
E—_Cout+cln— 6’15 )

If the cumulative effect of small collisions/deflections is
dominant, the RHS integral (collision term) can be Taylor
expanded to first order to yield the Fokker-Planck form (“friction”

+ diffusion in velocity space)

of

|
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We] The Fokker-Planck form
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e The Fokker-Planck form of the collision integral can also be
heuristically derived by considering a particle in a dilute gas that
experiences a large number of small amplitude, stochastic
“kicks”

e Random walk of tip of velocity (or momentum) vector
represents “diffusion” in velocity/momentum space

e Drag due to motion through dilute gas — “friction” term.

0 1 62
c:_a_u<Af> 2au2<Bf>
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@ The “friction” term
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of __ ,of

ot ou
Solution:

f o exp [—(u — At)2]

e Mean increases/decreases linearly with time; hence “friction”
e First order acceleration/deceleration.

e Relevant for situation where scattering centers move
systematically e.g., converging/diverging flows.
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@ The “diffusion” term
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of _0%f
3t~ a2

Solution (for constant D):

S = (rm) exp(‘fm)

e Gaussian broadens and gets shallower with time — diffusion
In velocity space.

e But mean velocity still increases! (why?)

e This is second order acceleration, typically due to
stochastically moving scattering centers.
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@ Nonthermal, power law spectrum: an example
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Consider only the “diffusion” term,

Of __1 9 (_2p)9f
ot 02(%( ’ D(U>8v)’

with collisions that yield
D(U) — DO U2 )

where Dy Is a constant. The steady-state solution is f x v¢; I.e.,
a power-law (clearly non-thermal) particle spectrum.

This is an example of a particular kind of second-order Fermi
acceleration. So the name of the game would be to find physical
situations that yield a particular form for the diffusion coefficient
D(v).
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@ Non-Coulomb collisions
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e Concept of “scattering centers” (Fermi, 1949)

e Scattering centers move
* systematically (first order Fermi acceleration), or
* stochastically (second order Fermi acceleration).

e Scattering centers could be: turbulent eddies, magnetic field
Inhomogenieties, EM waves whose amplitudes vary
stochastically with time (particles resonate w/ these waves)...
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Weg “Algorithm” - |
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* Determine physically motivated form for various terms in the
Fokker-Planck eq (e.g., A, B, escape timescale, source/sink
terms)

* Try to see what kinds of solutions one can get for particle
distribution (f); preferably analytical

* Get Green'’s function (i.e., response to monoenergetic
Injection), then convolve with input distribution (to
acceleration process) to get final overall particle distribution
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Weg “Algorithm” - ||
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* |f the particles are directly detected (e.g., as with cosmic
rays), things are a tad simpler; you can directly tell if the
distribution is thermal/nonthermal

* Else, from the computed particle distribution, try to get the
predicted observational signature (radiation)

* This involves radiation processes (e.g., synchroton,
gyrosynchrotron, bremstrahhlung, air showers..)

* Often the equations for the particle distribution and radiation
can be coupled (messy!)
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We] Thermal/nonthermal radiation: how to tell? |
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* |f detailed multiwavelength radiation spectrum is available:

* Body in thermodynamic equilibrium (i.e.,
thermal/Maxwellian particle distribution) will emit a
blackbody spectrum. The temperature of the emitting
particles will be immediately obvious from the observed
spectrum (e.g., the Sun’s photosphere is 6000 K)

* If the underlying particle spectrum is nonthermal, one
cannot define a temperature for the particles. The radiation
spectrum will depend upon the specific emission process.
But the spectrum will typically be a power law or so (not
blackbody)
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@ Thermal/nonthermal radiation: how to tell? Il
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* |f radiation spectrum not available (as is often the case):

* Define a brightness temperature
T, = (A\2/2k Q) x Observed Radiation Flux (Rayleigh-Jeans
part of blackbody spectrum)

* |f the brightness temperature is rather high (regardless of
whether or not the observed radiation is actually blackbody),
the radiation is probably nonthermal

* For a self-absorbed source, its possible to relate the
brightness temperature T;, of the observed radiation and the
Kinetic temperature T, of the underlying particles:

T, = (1/3k)ymc* =T,

—-p. 21



@ Pedagogical references
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* High Energy Astrophysics - Longair (Cambridge U. Press)

* Plasma Physics for Atrophysics - Kulsrud (Princeton U.
Press)

* An Introduction to the Theory of Astrophysical and
Laboratory Plasmas - Sturrock (Cambridge U. Press)

* Acceleration and transport of energetic charged particles in
space, J. R. Jokipii, 2001, Astrophysics and Space Science,
vol. 277, pp. 15-26

* Acceleration mechanisms, D. B. Melrose, 2009,
arXiv:0902.1803v1 (astro-ph.SR)
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NG

HISER PUNE

We next look at a couple of observations/observational
signatures of accelerated particles
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\\g Solar flare
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Figure 3: Image + limited spectral info. EIT/SOHO
| (movie)
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\\g Solar (radio) noise storm

Figure 4: Only image, no spectral info. GMRT



\e Solar (radio) type Il and type Il emission
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Figure 5: No image, limited spectral info. Hiraiso
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We] Solar Coronal Mass Ejection (CME) + flare
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Figure 6: Accelerated particles. LASCO/SOHO
(movie)
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\¢] Flare-accelerated 10-100 GeV cosmic rays?
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FIG. 11 Integral flux of protons with energy on 28 Octo-
ber 2005; a) Based on 100-600 Mel GOES-10/11 and sub-
GeV balloon data, b) World-wide NM data, c) B 220 GeV
GRAPES-3 upper limit, d) & >10 GV AGASA flux an 4
June 1901, &) ¥ =40 GeV L3 upper limit on 14 Julv 3000, f)
# =500 GeV Balksan upper limit on 29 September 1959, g)
® MM data on 15 April 2001, h) ¢ NM data on Z3 Fehruary
| 1956.
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\\._qj Microphysical processes: reconnection
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* Rearrangement of magnetic field topology

* Stressed field tries to return to potential (i.e., minimum
energy) configuration via reconnection

* — release of excess energy

e _, direct E field acceleration

e Also turbulent outflows — stochastic acceleration
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@ Reconnection

HISER PUNE

—-p. 30



We] An electron acceleration example
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* Subramanian et al (2003, Solar Physics, 218, 247, 2007,
Astronomy & Astrophysics, 468, 1099)

* Decimetric continuum at 1060 MHz (=~ 20 cm) observed
with GMRT;, associated with strong (M class) flare and
partial halo CME.
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We] X-ray flare
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\\.J Radio source
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W¢] GMRT (1060 MHz) source
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hﬂ What can one discern about the source
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* Brightness temperature of post-flare decimetric continuum
T, ~ 10° K, so emission is clearly nonthermal

* This kind of emission is known to be due to an emission
process known as plasma emission, which is initiated by an
accelerated electron population

e Assume a 2nd order Fermi acceleration mechanism for the
electrons, assume D « p?

* Calculate complete (power-law) spectrum of accelerated
electrons, estimate power input L;, to the electron
acceleration process

* We have a fair idea of the power L., contained in the
observed radiation

* The efficiency of the plasma emission process turns out to
be 2 x 1078 > n = Lout/Lin > 2 x 1077
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