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Cosmic ray spectrum observed at the Earth

Figure 1: These are clearly accelerated particles

– p. 2



Motivation

• Particle acceleration is pretty ubiquitous in Astrophysics
• e.g., boundary of Earth’s magnetosphere, Solar coronal

mass ejections, Solar flares, pulsar magnetospheres,
supernovae, supernova remnants, active galactic nuclei,
extended radio sources

• Not to mention cosmic rays observed at the Earth!
• Accelerated particles are either detected by particle

detectors (e.g., cosmic rays)
• or detected indirectly via the emission they produce

(nonthermal radiation)
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Solar flare

Figure 2: These too involve particle acceleration
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Outline

• Particle acceleration: what does it mean? (how is it different
from heating?)

• Modeling particle acceleration: the Liouville/Vlasov
formalism, the Fokker-Planck formalism, Fermi acceleration
mechanisms

• Observational signatures of accelerated particles; how can
you make out if the particle distribution is a thermal or a
nonthermal one?
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Thermal (i.e., Maxwellian) particle distribution

Let’s first remind ourselves of the familiar thermal particle
distribution:

f(u) = n

(

m

2πkT

)3/2

exp

(

−
mu

2

2kT

)

, n =

∫

d3u f(u)

A thermal particle distribution emits blackbody radiation that is
defined by the temperature T .
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Nonthermal (accelerated) particle distribution
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Where does the Maxwellian distribution come from? I

Consider first the collisionless Boltzmann equation

Df

Dt
= ḟ + ẋ∇ f + u̇∇u f = 0

The distribution function f represents the probability of finding a
given particle in a given element of position-velocity phase
space d3x d3u. The total number of particles is

n =

∫

f d3x d3u

ḟ → the creation/destruction of particles, ẋ → the time evolution
of the space-coordinate and u̇ → the time evolution of the
velocity-coordinate. The collisionless Boltzmann eq simply says
that the number of particles in an elemental volume of phase
space d3x d3u (even as its deformed with time) is conserved.
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Where does the Maxwellian distribution come from? II

• Any initial distribution will eventually relax to a Maxwellian
when RHS of Boltzmann eq = 0. Viewed another way, the
LHS has to be zero for a gas in equilibrium → Maxwellian

• Even if the RHS were not 0; i.e., if there were collisions that
take particles in and out of an elemental phase space
volume,

◦ for a given number, momentum and energy, the
Maxwellian distribution occupies the maximum phase
space volume

◦ Generalized entropy argument: H =
∫

f lnfd3u always ↓

with time, and the minimum is achieved by the
Maxwellian

• So any distribution eventually relaxes to a Maxwellian.
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Collisions

• RHS of Boltzmann eq need not be zero; there can be
collisions which move particles in and out of d3x d3u. The
RHS (the collision operator) is an integral over velocities
which involves the distribution function

• When the collisions are Coulomb in nature, a Maxwellian f
makes the RHS = 0

• Coulomb collisions → heating ; T ↑ leads to ↑ in width
(variance) of Maxwellian

• With non-Coulomb collisions, non-Maxwellian distributions
eventually relax to a Maxwellian, provided there’s enough
time. Else, the distribution could be
non-thermal/accelerated.
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Nonthermal particle distributions
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The “collisional” Boltzmann equation

Df

Dt
= −Cout + Cin =

∂f

∂t

∣

∣

∣

∣

c

If the cumulative effect of small collisions/deflections is
dominant, the RHS integral (collision term) can be Taylor
expanded to first order to yield the Fokker-Planck form (“friction”
+ diffusion in velocity space)

∂f

∂t

∣

∣

∣

∣

c

= −
∂

∂u

(

Af

)

+
1

2

∂2

∂u2

(

Bf

)
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The Fokker-Planck form

• The Fokker-Planck form of the collision integral can also be
heuristically derived by considering a particle in a dilute gas that
experiences a large number of small amplitude, stochastic
“kicks”

• Random walk of tip of velocity (or momentum) vector
represents “diffusion” in velocity/momentum space

• Drag due to motion through dilute gas → “friction” term.

∂f

∂t

∣

∣

∣

∣

c

= −
∂
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(

Af

)

+
1

2

∂2

∂u2

(

Bf

)
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The “friction” term

∂f

∂t
= −A

∂f

∂u

Solution:

f ∝ exp

[

−(u − At)2
]

• Mean increases/decreases linearly with time; hence “friction”

• First order acceleration/deceleration.

• Relevant for situation where scattering centers move
systematically e.g., converging/diverging flows.
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The “diffusion” term

∂f

∂t
= D

∂2f

∂v2

Solution (for constant D):

f =

(

D

4πt

)1/2

exp

(

−
v2

4Dt

)

• Gaussian broadens and gets shallower with time → diffusion
in velocity space.

• But mean velocity still increases! (why?)

• This is second order acceleration, typically due to
stochastically moving scattering centers.
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Nonthermal, power law spectrum: an example

Consider only the “diffusion” term,

∂f

∂t
= −

1

v2

∂

∂v

(

−v2 D(v)
∂f

∂v

)

,

with collisions that yield

D(v) = D0 v2 ,

where D0 is a constant. The steady-state solution is f ∝ vα; i.e.,
a power-law (clearly non-thermal) particle spectrum.

This is an example of a particular kind of second-order Fermi
acceleration. So the name of the game would be to find physical
situations that yield a particular form for the diffusion coefficient
D(v).
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Non-Coulomb collisions

• Concept of “scattering centers” (Fermi, 1949)

• Scattering centers move
• systematically (first order Fermi acceleration), or
• stochastically (second order Fermi acceleration).

• Scattering centers could be: turbulent eddies, magnetic field
inhomogenieties, EM waves whose amplitudes vary
stochastically with time (particles resonate w/ these waves)...
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“Algorithm” - I

• Determine physically motivated form for various terms in the
Fokker-Planck eq (e.g., A, B, escape timescale, source/sink
terms)

• Try to see what kinds of solutions one can get for particle
distribution (f ); preferably analytical

• Get Green’s function (i.e., response to monoenergetic
injection), then convolve with input distribution (to
acceleration process) to get final overall particle distribution
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“Algorithm” - II

• If the particles are directly detected (e.g., as with cosmic
rays), things are a tad simpler; you can directly tell if the
distribution is thermal/nonthermal

• Else, from the computed particle distribution, try to get the
predicted observational signature (radiation)

• This involves radiation processes (e.g., synchroton,
gyrosynchrotron, bremstrahhlung, air showers..)

• Often the equations for the particle distribution and radiation
can be coupled (messy!)
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Thermal/nonthermal radiation: how to tell? I

• If detailed multiwavelength radiation spectrum is available:

• Body in thermodynamic equilibrium (i.e.,
thermal/Maxwellian particle distribution) will emit a
blackbody spectrum. The temperature of the emitting
particles will be immediately obvious from the observed
spectrum (e.g., the Sun’s photosphere is 6000 K)

• If the underlying particle spectrum is nonthermal, one
cannot define a temperature for the particles. The radiation
spectrum will depend upon the specific emission process.
But the spectrum will typically be a power law or so (not
blackbody)
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Thermal/nonthermal radiation: how to tell? II

• If radiation spectrum not available (as is often the case):

• Define a brightness temperature
Tb = (λ2/2k Ω) × Observed Radiation Flux (Rayleigh-Jeans
part of blackbody spectrum)

• If the brightness temperature is rather high (regardless of
whether or not the observed radiation is actually blackbody),
the radiation is probably nonthermal

• For a self-absorbed source, its possible to relate the
brightness temperature Tb of the observed radiation and the
kinetic temperature Te of the underlying particles:
Te = (1/3k) γ m c2 = Tb
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Pedagogical references

• High Energy Astrophysics - Longair (Cambridge U. Press)

• Plasma Physics for Atrophysics - Kulsrud (Princeton U.
Press)

• An Introduction to the Theory of Astrophysical and
Laboratory Plasmas - Sturrock (Cambridge U. Press)

• Acceleration and transport of energetic charged particles in
space, J. R. Jokipii, 2001, Astrophysics and Space Science,
vol. 277, pp. 15-26

• Acceleration mechanisms, D. B. Melrose, 2009,
arXiv:0902.1803v1 (astro-ph.SR)
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We next look at a couple of observations/observational
signatures of accelerated particles
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Solar flare

Figure 3: Image + limited spectral info. EIT/SOHO

(movie)
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Solar (radio) noise storm

Figure 4: Only image, no spectral info. GMRT
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Solar (radio) type II and type III emission

Figure 5: No image, limited spectral info. Hiraiso
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Solar Coronal Mass Ejection (CME) + flare

Figure 6: Accelerated particles. LASCO/SOHO

(movie)
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Flare-accelerated 10–100 GeV cosmic rays?
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Microphysical processes: reconnection

• Rearrangement of magnetic field topology

• Stressed field tries to return to potential (i.e., minimum
energy) configuration via reconnection

• → release of excess energy

• → direct ~E field acceleration

• Also turbulent outflows → stochastic acceleration
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Reconnection
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An electron acceleration example

• Subramanian et al (2003, Solar Physics, 218, 247; 2007,
Astronomy & Astrophysics, 468, 1099)

• Decimetric continuum at 1060 MHz (≈ 20 cm) observed
with GMRT; associated with strong (M class) flare and
partial halo CME.
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X-ray flare
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Radio source
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GMRT (1060 MHz) source
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What can one discern about the source

• Brightness temperature of post-flare decimetric continuum
Tb ≈ 109 K, so emission is clearly nonthermal

• This kind of emission is known to be due to an emission
process known as plasma emission, which is initiated by an
accelerated electron population

• Assume a 2nd order Fermi acceleration mechanism for the
electrons, assume D ∝ p2

• Calculate complete (power-law) spectrum of accelerated
electrons, estimate power input Lin to the electron
acceleration process

• We have a fair idea of the power Lout contained in the
observed radiation

• The efficiency of the plasma emission process turns out to
be 2 × 10−8 > η ≡ Lout/Lin > 2 × 10−9
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